
The GROMOS Software for Biomolecular Simulation:
GROMOS05

MARKUS CHRISTEN, PHILIPPE H. HÜNENBERGER, DIRK BAKOWIES, RICCARDO BARON,
ROLAND BÜRGI,* DAAN P. GEERKE, TIM N. HEINZ, MIKA A. KASTENHOLZ,

VINCENT KRÄUTLER, CHRIS OOSTENBRINK,† CHRISTINE PETER,‡ DANIEL TRZESNIAK,
WILFRED F. VAN GUNSTEREN

Laboratory of Physical Chemistry, Swiss Federal Institute of Technology Zürich,
ETH-Hönggerberg, CH-8093 Zürich, Switzerland

Received 22 July 2005; Accepted 2 August 2005
DOI 10.1002/jcc.20303

Published online in Wiley InterScience (www.interscience.wiley.com).

Abstract: We present the latest version of the Groningen Molecular Simulation program package, GROMOS05. It has
been developed for the dynamical modelling of (bio)molecules using the methods of molecular dynamics, stochastic
dynamics, and energy minimization. An overview of GROMOS05 is given, highlighting features not present in the last
major release, GROMOS96. The organization of the program package is outlined and the included analysis package
GROMOS�� is described. Finally, some applications illustrating the various available functionalities are presented.

© 2005 Wiley Periodicals, Inc. J Comput Chem 26: 1719–1751, 2005

Key words: molecular dynamics simulation; programming; GROMOS; biomolecular simulation

Introduction

Starting with GROMOS80, the GROMOS program package has
been developed over the past 25 years to facilitate research efforts
in the field of biomolecular simulation in a university environment.
The GROMOS software was and is meant for use in a scientific
environment, which may be characterized by a continuously
changing flow of users, who either wish to investigate and imple-
ment new simulation algorithms or intend to carry out applications
of simulation in a variety of fields, ranging from polymers, glasses
and liquid crystals, to crystals and solutions of biomolecules (pro-
teins, nucleic acids, saccharides, and lipids). To this purpose,
GROMOS has been developed based on the following principles:
(1) transparency of the code, making modifications easy; (2) mod-
ular architecture, so that only parts of it need be modified for the
implementation of new functionalities designed by users; (3) in-
dependence of the simulation code and the force field; and (4)
independence of the simulation code and the computer hardware.
The major releases of the GROMOS software are GROMOS871,2

developed at the University of Groningen, GROMOS963,4 devel-
oped at ETH Zürich, and now GROMOS05. GROMOS has found
widespread use (hundreds of licenses in over 57 countries on all
continents except Antarctica, see Fig. 1), triggered by the fact that
it has been designed for ease of extendability and that the complete
source code is made available to research establishments for a
nominal fee (http://www.igc.ethz.ch/gromos). The program code

has been further developed in the group for computational chem-
istry at ETH Zürich (Switzerland) throughout the recent years,
leading now to a new major release, GROMOS05. The enhance-
ments were governed by the following criteria: (1) interest of our
research group,5 (2) ease of use, (3) extendability, (4) demon-
strated usefulness or efficiency of new methods, (5) well-defined
and correct formulae and algorithms, and (6) computational effi-
ciency. The second criterium led to a complete rewrite of the setup
and analysis tools, now contained in the GROMOS�� setup and
analysis subpackage, written in C��. The third criterium led to a
rewrite in C�� of the MD engine, the part that carries out
molecular dynamics (MD) or stochastic dynamics (SD) simula-
tions as well as energy minimizations (EM), into a new program
called MD��. In parallel, the original FORTRAN version of the

Correspondence to: W. F. van Gunsteren; e-mail: wfvgn@igc.phys.
chem.ethz.ch

Contract/grant sponsor: National Center of Competence in Research
(NCCR) Structural Biology of the Swiss National Science Foundation
(SNSF)

*Present address: Swissre, Zürich, Switzerland.
†Present address: Vrije Universiteit, Pharmaceutical
Sciences/Pharmacochemistry, De Boelelaan 1083 P262, NL-1081 HV
Amsterdam, The Netherlands.
‡Present address: Max-Planck-Institute for Polymer Research,
Ackermannweg 10, D-55128 Mainz, Germany.

© 2005 Wiley Periodicals, Inc.



MD engine, PROMD, was further developed to introduce many
new features (some of which are not yet available in MD��). In
the long term (beyond GROMOS05), MD�� will entirely replace
PROMD.

In the next sections the main features of GROMOS05 are
described. First, new functionalities with respect to GROMOS96
are highlighted. Second follows the algorithmic description of
selected new functionalities. Third, the organization of the code is
discussed and an overview of the programs present in the GRO-
MOS�� analysis subpackage is provided. Fourth, examples of
applications are reported for some of the newer features. Finally,
summary and conclusions are provided.

Overview of Functionalities

Here, the main features of the two MD engines available in
GROMOS05, PROMD and MD�� are described. These two
programs share most of the basic functionalities, but still differ in
a number of aspects. The FORTRAN MD engine (PROMD)
retains all features of the GROMOS96 release and adds a number
of new functionalities. The C�� MD engine (MD��) contains
most of the GROMOS96 features (except four-dimensional and
path-integral simulations), a subset of the new functionalities re-
cently introduced into PROMD (since the GROMOS96 release),
and some new features of its own.

A nonexhaustive list of the features included is:

● molecular dynamics (MD) simulation, stochastic dynamics (SD)
simulation, and energy minimization (EM; steepest descent or
conjugate gradient);

● periodic boundary conditions (vacuum, rectangular, truncated

Figure 1. Distribution of GROMOS licenses.

Figure 2. Illustration of the standard double-loop and the improved
pairlist algorithm for a set of 10 atoms or charge groups. The standard
algorithm scans the triangular atom-pair matrix row by row (top,
unshaded box). A quadratic (top, light gray shade) or rhombic (top,
dark gray shade) window scans more atom pairs for a given number of
atoms loaded into processor cache. The triangular atom-pair matrix
may be reordered to become rectangular (bottom), in which case the
rhombic window becomes quadratic.

1720 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



octahedral, or triclinic computational box; possibility of per-
forming multiple-unit-cell simulations);

● temperature control (constraining, weak coupling, Nosé–Hoover
or Nosé–Hoover chain; possible coupling of different subsets of
degrees of freedom to separate temperature baths);

● pressure control (weak coupling or Andersen–Parrinello–Rah-
man, isotropic, partially anisotropic, and fully anisotropic coor-
dinate scaling; atom-based or group-based pressure definition);

● long-range electrostatic interactions: straight cutoff truncation,
truncation with Poisson–Boltzmann reaction field (RF) correc-
tion and lattice-sum (LS) methods, including Ewald summation
and particle–particle–particle–mesh (P3M);

● charge-group based or atom-based cutoff for the nonbonded
interactions;

● Grid-based pairlist construction;
● nonphysical interactions: atom-position, atom-distance, dihe-

dral-angle, NOE, and J-value restraints as well as atom-position
and atom-distance constraints (SHAKE, M-SHAKE, LINCS);

● enhanced sampling: local elevation MD, replica exchange MD
(REMD), and umbrella sampling;

● calculation of free energy changes based on the coupling pa-
rameter (�) approach using thermodynamic integration, slow-
growth or one-step perturbation, possibly including soft-core
nonbonded interactions;

● path-integral simulation;
● MPI and OMP parallelization.

A number of the new features introduced in GROMOS05 are
discussed later. Preexisting features have been described in details
elsewhere.3,4 The functionalities of the pre- and postprocessing
programs contained in GROMOS�� are also discussed later. A
complete description of the available features will be included in
the new GROMOS manuals.

Algorithms

MD Algorithm

The complete MD algorithm based on the leap-frog scheme as
implemented in GROMOS is the following.3 Given initial atomic
positions and velocities, which satisfy any given geometrical con-
straints:

1. Save positions (reset atomic coordinates into the reference
computational box in case of periodic boundary conditions)
and velocities for later analysis.

2. Remove center of mass motion (if required).
3. Calculate (unconstrained) energies, forces, and virial contri-

bution from the potential energy function (using the nearest
image convention in case of periodic boundary conditions).
Save these.

4. Enforce any given position constraints by resetting the forces
and velocities of positionally constrained atoms to zero.

5. Update the velocities using the leapfrog scheme.
6. Apply temperature coupling (constraining, weak coupling,

Nosé–Hoover or Nosé–Hoover chain) by scaling the atom
velocities.

7. Update the positions using the leapfrog scheme.
8. Enforce distance constraints (using SHAKE, M-SHAKE, or

LINCS) both for positions and velocities, and calculate the
corresponding forces and virial contribution. Save these.

9. Calculate the kinetic energy and temperature (possibly on the
basis of separate subsets of degrees of freedom).

10. Calculate the pressure (atom-based or group-based pressure
definition).

11. Apply pressure scaling (weak coupling or Andersen–Parrinel-
lo–Rahman) by scaling atomic positions (isotropic, partially
anisotropic, or fully anisotropic scaling).

12. Update the coupling parameter � for (free energy) simulations
involving � changes (slow growth).

13. Calculate total energies, averages, and fluctuations. Save
these.

This sequence is repeated for the required number of simulation
steps.

New Features

Spatial Boundary Conditions

Spatial boundary conditions are defined by the shape, size, and
orientation of the simulated system, and the nature of the boundary
to its surroundings. The GROMOS05 implementation (both
PROMD and MD��) admits four types of boundary conditions:
(1) vacuum boundary conditions; (2) periodic boundary conditions
based on a rectangular box; (3) periodic boundary conditions based
on a truncated-octahedral box; (4) periodic boundary conditions
based on a triclinic box. In the three latter cases, the system is
confined to a (reference) computational box that is surrounded by
an infinite number of periodic copies of itself.

When periodic boundary conditions are applied, the shape, size,
and orientation of the computational box must be defined. For
rectangular and triclinic periodic boundary conditions, this is done
by specifying the three edge vectors a, b, and c (defining a
right-handed coordinate system) of the reference computational
box. For a truncated-octahedral box, these vectors correspond
instead to the edges of the cube based on which the truncated
octahedron is constructed. In practice, the three vectors are spec-
ified by their lengths a, b, and c, the box angles � (between a and
b), � (between a and c), and � (between b and c) they define
among each other (all in the range ]0; �[), and the three Euler
rotation angles �, �, and � (the two former ones in the range ]��;
�], the latter one in the range [��/2; �/2]) characterizing the
orientation of the box relative to the reference right-handed Car-
tesian coordinate system (ex, ey, ez). To define the Euler angles,
the three edge vectors are used to define a box-linked right-handed
Cartesian coordinate system (ex�, ey�, ez�) in the following way:
(1) the x�-axis is chosen along and in the direction of a; (2) the
y�-axis is chosen orthogonal to a in the plane defined by a and b,
and oriented in the direction of b; (3) the z�-axis is chosen
orthogonal to both a and b, and oriented in the direction of c. The
reference coordinate system can be rotated onto the box-linked
coordinate system by the following series of rotations: (1) a
rotation by an angle � around the z-axis; (2) a rotation by an angle
� around the new y-axis; (3) a rotation by an angle � around the

GROMOS Software for Biomolecular Simulation 1721



new x-axis. The angles �, �, and � thus represent the three Euler
rotation angles in a zyx or yaw-pitch-roll convention. The use of a
rectangular or truncated-octahedral box requires � � � � � � �/2
and is restricted to nonrotated boxes with � � � � � � 0. The use
of a truncated-octahedral box also requires a � b � c. In the case
of vacuum boundary conditions, the system is nonperiodic, and a,
b, and c need not be specified.

Based on a general triclinic box in an arbitrary orientation, the
position of an atom may be specified through coordinates r � ( x,
y, z) within the reference Cartesian coordinate system (ex, ey, ez),
or through oblique fractional coordinates � � (u, v, w) with
reference to the box-edge vectors. The two types of coordinates are
related by

r 	 L� �, (1)

where the matrix L� contains the components of a, b, and c in the
reference Cartesian coordinate system as its columns. The box
volume is

V 	 �L� �. (2)

This matrix can be decomposed as

L� 	 �ax bx cx

ay by cy

az bz cz

� 	 R� S� , (3)

where the orthogonal transformation matrix R� (rotation between
reference and box-linked Cartesian coordinate systems) is given by

R� 	 �cos � cos � sin � sin � cos � 
 cos � sin � cos � sin � cos � � sin � sin �
cos � sin � sin � sin � sin � � cos � cos � cos � sin � sin � 
 sin � cos �

�sin � sin � cos � cos � cos �
�, (4)

and the transformation matrix S� (between box-linked Cartesian
coordinates and oblique fractional coordinates) is given by

S� 	 �a b cos � c cos �
0 b sin � c sin � cos �
0 0 c sin � sin �

�, (5)

with

cos � 	
cos � 
 cos � cos �

sin � sin �
, � � ]0; ��. (6)

As shown by Bekker,6 a simulation performed in a truncated-
octahedral box can equivalently be performed in a special type of
triclinic box, by applying an appropriate coordinate transforma-
tion. A possible choice for the edges at, bt, and ct of the trans-
formed triclinic box is

at 	 a, bt 	 �1/2��a � b � c� and ct 	 �1/2���a 
 b � c�.

(7)

The corresponding box-edge lengths, box angles, and Euler angles
are at � a, bt � ct � (�3/ 2)a, �t � acos(�1/3) 	 109.5o,
�t � acos(�1/�3) 	 125.3o, �t � acos(1/�3) 	 54.8o, �t �
�t � 0, and �t � 45o. The mapping of atomic coordinates within
a truncated-octahedral box to atomic coordinates within the trans-
formed triclinic box is performed by applying shifts along the at,
bt, and ct vectors. This formalism is applied for the generalization
of grid-based pairlist algorithms and lattice-sum electrostatics to
truncated-octahedral boxes. Because the truncated-octahedral case
can always be mapped to the triclinic case, subsequent sections
will only discuss the case of the triclinic box.

Multiple-Unit-Cell Simulations

Within the GROMOS05 implementation (both PROMD and
MD��), it is possible to simulate a periodic computational box
(rectangular or triclinic only) consisting of multiple periodic cop-
ies of a smaller unit cell (referred to here as subcells). This option
may be useful when trying to simulate a single unit cell of a crystal
that is too small to allow for the application of a reasonably large
cutoff value. The number of subcell boundaries along the three
box-edge vectors a, b, and c are Ma, Mb, and Mc, so that the total
number of subcells is M � Ma � Mb � Mc. In this case, the total
number of solute molecules and the total number of solvent mol-
ecules must both be integer multiples of M.

Subcell periodicity within the computational box must be ful-
filled by the initial coordinates and velocities, and will then be
maintained throughout the simulation. The corresponding period-
icity constraints on the forces, velocities, and coordinates are
checked at each step of the simulation, with reference to the subset
of solute and solvent molecules with the smallest sequence num-
bers. Deviations smaller than user-specified tolerances (numerical
drift) are systematically corrected. Deviations larger than the tol-
erance are reported as an error.

Note that the removal of the center of mass motion, whenever
required, is applied to charge groups and solvent molecules gath-
ered in the individual subcells. Note also that the application of the
particle–particle–particle–mesh (P3M) method to evaluate electro-
static interactions will only give rise to exactly periodic forces if
the number of P3M grid subdivisions along each axis is an integer
multiple of the corresponding number of subcell boundaries.

In MD��, only a single subcell is simulated. Just for the
nonbonded interaction calculation the subcell is multiplied to
construct the full box. Energies, forces, and virial contributions
need only be calculated for atoms inside the reference subcell, but

1722 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



those are interacting with all other atoms in the full box. Because
of that, fewer (nonbonded and covalent) interactions than in the
full box simulation have to be calculated and the positions and
velocities are always exactly periodic.

Rigid-Body Motion

The laws of classical mechanics lead to two conserved quantities
(besides the total energy): (1) the linear momentum psys of the
system, and (2) the angular momentum Lsys of the system around
its center of mass. In simulations under periodic boundary condi-
tions, the two quantities refer to the infinite periodic system.
However, in this case, if the linear momentum pbox of the com-
putational box is also conserved, the corresponding angular mo-
mentum Lbox is not (because correlated rotational motions in two
adjacent boxes exert friction on each other, leading to an exchange
of kinetic energy with the other degrees of freedom of the system).
Furthermore, the quantity Lsys must vanish (because overall uni-
form rotation of the infinite periodic system would lead to nonpe-
riodic centrifugal forces). When SD is applied instead of MD, the
presence of random and frictional forces couples the system (or
box) linear and angular momenta with the other degrees of free-
dom of the system, so that these quantities are no longer con-
served. The inclusion of special (unphysical) forces, such as atom-
position restraining or constraining forces on a subset of atoms in
the system, may also lead to nonconservation of these quantities.
The above observations are summarized in Table 1.

The physical properties of a molecular system are independent
of psys (or pbox). However, for MD simulations under vacuum
boundary conditions, they depend on Lsys, because the rotation of
the system leads to centrifugal forces. For these reasons, in the
GROMOS05 implementation (PROMD only), the constraint
psys � 0 (or pbox � 0) is imposed at each time step throughout any
simulation. In addition, the constraint Lsys � Lsys

o , where Lsys
o is

a user-specified reference value, is imposed throughout any MD
simulation under vacuum boundary conditions. These two con-
straints will in particular prevent the progressive accumulation of
kinetic energy into the uncoupled degrees of freedom due to
applying a thermostat by velocity scaling and numerical errors,
giving rise to the well-known (and quite unpleasant) “flying ice
cube problem.”7–9 In addition roto-translational constraints10 may
be applied to the solute molecule(s) during the simulation.

Instantaneous Temperature and Pressure

The instantaneous observables � and �, and time averages of
which determine the system macroscopic temperature T and pres-
sure tensor P� , are not uniquely defined.7,11–14 Acceptable alterna-
tive definitions differ by any quantity with a vanishing equilibrium
average. Note, however, that the corresponding equilibrium fluc-
tuations depend on the specific definition chosen for the instanta-
neous observable.

In the GROMOS05 implementation (both PROMD and
MD��), the instantaneous temperature � is defined using the
(atom-based) internal kinetic energy of the system, as7

� 	
2

kBNdf
�, (8)

where kB is Boltzmann’s constant, Ndf the number of internal
(unconstrained) degrees of freedom of the system, and � its
instantaneous internal kinetic energy. The word “internal” is used
here to exclude possible contributions from the degrees of freedom
that are “external,” that is, uncoupled from the system in terms of
kinetic energy exchange.15 In MD simulations, these are the de-
grees of freedom associated with the system (or box) rigid-body
translation and, under vacuum boundary conditions, system rigid-
body rotation. The number of internal degrees of freedom is thus
calculated as three times the total number N of atoms in the
system, minus the number Nc of geometrical constraints, minus the
number Nr of external degrees of freedom (Table 1), that is,

Ndf 	 3N 
 Nc 
 Nr. (9)

The instantaneous internal kinetic energy is defined as

� 	
1

2 �
i�1

N

miṙi
2, (10)

where the internal (also called peculiar) velocities ṙi are obtained
from the real atomic velocities ṙi

o by excluding any component
along the external degrees of freedom (it is assumed that the
velocities ṙi

o are already exempt of any component along possible
geometrical constraints). Due to the constraints imposed in the

Table 1. Properties of Momenta Associated with Rigid-Body Motions in MD or SD Simulations under
Vacuum or Periodic Boundary Conditions.

Method Boundary psys pbox Lsys Lbox Nr

MD Vacuum Conserved Conserved 6
MD Periodic Infinite Conserved Zero Coupled 3
SD Vacuum Coupled Coupled 0
SD Periodic Infinite Coupled Zero Coupled 0

The quantities considered are: psys and pbox (linear momentum of the overall system and the computational box, Lsys

and Lbox (angular momentum of the overall system and the computational box), and Nr (number of uncoupled degrees
of freedom associated with rigid-body motions).

GROMOS Software for Biomolecular Simulation 1723



GROMOS05 implementation (PROMD only) on the system total
linear and angular momenta, the internal velocities only differ
from the real ones when MD is applied under vacuum boundary
conditions. In this case, one has

ṙi 	 ṙi
o 
 I�CM

�1 �ro�Lsys
o 
 �ri

o 
 rCM
o �, (11)

where rCM
o is the (constant) coordinate vector of the system center

of mass, Lsys
o the (constant) system angular momentum about the

CM, and I�CM is the (configuration-dependent) inertia tensor of the
system relative to the CM. The latter quantity is defined as

I�CM�ro� 	 �
i�1

N

mi�ri
o 
 rCM

o � � �ri
o 
 rCM

o �, (12)

where a R b denotes the tensor with elements �, � equal to a�b�.
In the GROMOS05 implementation (both PROMD and

MD��), the instantaneous pressure tensor � is related to the
group-based virial and group-based internal kinetic energy tensor
of the system. The word “group-based” refers to a pressure defi-
nition excluding virial and kinetic-energy contributions within
user-specified groups of (covalently-linked) atoms.13,14 These
groups will be referred to as virial groups. Single atoms can be
used as virial groups, in which case an atom-based pressure defi-
nition is recovered. The average pressure is not affected by the
specific choice of groups, but the pressure fluctuations are. In
practice, atom grouping is used to reduce these fluctuations. The
pressure is only calculated for systems under periodic boundary
conditions. Note also that the contribution of special (nonphysical)
forces (e.g., atom-position or atom-distance restraining) to the
pressure is not included.

The instantaneous atom-based pressure tensor is computed as

�* 	
2

�
��* 
 �*� (13)

where

�* 	
1

2 �
i�1

N

miṙi � ṙi, (14)

and

�*�� 	
1

2 �
�

��

�L��

L�� (15)

are the instantaneous atom-based internal kinetic energy and virial
tensors, � and � being the instantaneous volume and total poten-
tial energy of the system, L� the matrix defined by eq. (3), and ṙi the
internal velocities introduced above. The corresponding isotropic
(scalar) quantities are related to the tensor quantities through

�* 	 Tr��*
, �* 	 Tr��*
 and �* 	 �1/3�Tr��*
, (16)

where Tr returns the trace of a matrix, �* is equivalent to � in eq.
(10), and �* is defined as

�* 	
3�

2

��

��
. (17)

It is possible to show that:16,17 (1) the contribution to the
atom-based virial tensor of a potential energy term that solely
depends on the scalar products or determinants defined by a set of
interatomic vectors is symmetric; (2) the contribution to the atom-
based virial tensor of a potential energy term that solely depends
on the angles defined by a set of vectors is (in addition) traceless.
The first observation implies that all covalent (bond stretching or
constraint, bond-angle bending, proper and improper dihedral an-
gle), and pairwise nonbonded force field terms lead to a symmetric
contribution to the atom-based virial. The second observation
implies that covalent bond-angle bending as well as proper and
improper dihedral angle (but not bond stretching or constraint and
pairwise nonbonded) terms lead to a traceless contribution to the
atom-based virial (i.e., no contribution to the scalar atom-based
pressure). However, these results are generally not valid for the
corresponding group-based tensor (see below).

In the special case of a pairwise-additive interaction term �p

depending on minimum-image interatomic distances and without
explicit dependence on the box dimensions (bond stretching or
constraint and pairwise nonbonded terms; but not reciprocal-space
lattice-sum interactions13,14), eq. (15) leads to a virial contribution

�*p 	 �
1

2 �
i

N �
j�i

N

Fp,ij � r� ij, (18)

where rij � ri � rj is the vector connecting j to i, r�ij the
corresponding minimum-image vector, and Fp,ij the pairwise force
exerted by atom j on atom i. This equation is easily generalized to
interaction terms involving more than two atoms (bond-angle
bending, proper and improper dihedral-angle terms). The atom-
based virial contribution of all covalent (including bond con-
straints) and nonbonded (excluding reciprocal-space lattice-sum
interactions) terms is calculated using eq. (18) or one of its
generalizations.

The GROMOS05 implementation (both PROMD and MD��)
includes the possibility of using a group-based pressure definition
(corresponding to any arbitrary repartition of atoms into virial
groups), instead of the atom-based one. In this case, the intragroup
contribution to the kinetic energy as well as the contribution of
intragroup forces to the virial are removed from the pressure
definition (which affects the fluctuations of this quantity, but not its
average value). As shown elsewhere13,14 (the equations reported
therein should be altered by halving the virial and replacing rij by
�rij to match the present conventions), the group-based virial
tensor can be calculated from the corresponding atom-based tensor
by adding a simple correction term, which depends on the overall
atomic forces and on the virial groups definitions. More precisely,
the group-based virial tensor is given by

1724 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



� 	 �* �
1

2 �
I�

FI� � dI�, (19)

where I� denotes atom � in virial group I, FI� the overall force on
atom I�, and dI� the coordinate vector of atom I� relative to the
center of mass of the gathered virial group I containing this atom.
The “gathered” representation of the virial group is generated by
following the atoms as they drift throughout the periodic system.
The group-based pressure tensor is then calculated as

� 	
2

�
�� 
 ��, (20)

where � is the group-based internal kinetic energy tensor, defined
as

� 	
1

2 �
I�1

Ns ��
��1

Na�I�

mi��1��
��1

Na�I�

miṙi� � ��
��1

Na�I�

miṙi�, (21)

where Ns is the number of virial groups and Na(I) the number of
atoms in virial group I.

Although the atom-based pressure tensor �* is typically sym-
metric, this is generally not the case for the group-based pressure
tensor � (although the antisymmetric contribution to this tensor
should vanish upon time averaging). When applying a barostat
algorithm, the antisymmetric component of � should induce an
overall rotation of the computational box (which would alter the
box angular momentum), while the symmetric component results
in a deformation of the box (which conserves the box angular
momentum). In practice, the overall rotation of the box is rather a
nuisance, and is avoided by symmetrizing the tensor (� 3
(1/ 2)[� � t�]) prior to application of the barostat algorithm,18

where the “t” presuperscript indicates the transpose of the matrix.

Thermostat Algorithms

MD simulation relies on integrating the classical (Newtonian)
equations of motion for a molecular system, and thus, samples a
microcanonical (constant-energy) ensemble by default. However,
for compatibility with the experiment, it is often desirable to
sample configurations from a canonical (constant-temperature)
ensemble instead. A modification of the basic MD scheme with the
purpose of maintaining the temperature constant (on average) is
called a thermostat algorithm.7 Note that in contrast, SD automat-
ically generates a canonical ensemble, at a temperature determined
by the balance between the magnitudes of the random and fric-
tional forces.

In the GROMOS05 implementation (both PROMD and
MD��), four different thermostat algorithms are available: (1)
temperature constraining (Woodcock thermostat19); (2) tempera-
ture relaxation by weak coupling (Berendsen thermostat20); (3)
temperature relaxation by an extended-system method (Nosé–
Hoover thermostat21,22); (4) temperature relaxation by the Nosé–
Hoover chain thermostat.23 In all cases, the instantaneous temper-
ature � is calculated as described earlier, and relaxed towards a

temperature To associated with the heat bath to which the system
is coupled. The three latter algorithms also involve the specifica-
tion of the characteristic time � for this relaxation. All the above
thermostat algorithms rely on a scaling of the atomic velocities
after each integration time step. This scaling should only operate
on the internal velocities, excluding any component along the
external degrees of freedom (see earlier). Due to the constraints
imposed in the GROMOS05 implementation on the system total
linear and angular momenta, the internal velocities only differ
from the real ones when MD is applied under vacuum boundary
conditions. In this case, the velocity scaling is applied on the
internal velocities ṙi and the real velocities ṙi

o can be recovered
through the inverse of eq. (11), namely

ṙi
o 	 ṙi � I�CM

�1 �ro�Lsys
o 
 �ri

o 
 rCM
o �. (22)

When simulating molecular systems involving distinct sets of
degrees of freedom with either (1) very different characteristic
frequencies or (2) very different heating (or cooling) rates caused
by algorithmic noise (e.g., electrostatic cutoff, application of atom-
distance constraints), the joint coupling of all degrees of freedom
to a single thermostat may lead to different effective temperatures
for the different sets of degrees of freedom (due to a too slow
exchange of kinetic energy). A typical example is the so-called
“hot solvent–cold solute problem” in simulations of macromole-
cules. Because the solvent is often more significantly affected by
algorithmic noise (heating due to the use of an electrostatic cutoff),
the coupling of the whole system to a single thermostat may cause
the average solute temperature to be significantly lower than the
average solvent temperature. In the GROMOS05 implementation
(both PROMD and MD��), this problem may be alleviated by
separately coupling different subsets of degrees of freedom (e.g.,
solute, counterions, cosolvent, and solvent) to different indepen-
dent thermostats.

The prototype of most isothermal equations of motion is

r̈i�t� 	 mi
�1Fi�t� 
 ��t�ṙi�t�. (23)

The function �(t) controls the heat exchange between the system
and the heat bath. A negative value indicates that heat flows to the
system, while a positive value indicates a heat flow in the opposite
direction. Practical implementations of eq. (23) rely on the step-
wise integration of Newton’s second law [eq. (23) with �(t) � 0],
altered by the scaling of the atomic velocities after each iteration
step. In the context of the leapfrog integrator24 used in GRO-
MOS05, this can be written as

ṙi�t �
�t

2 � 	 ��t; �t�ṙ�i�t �
�t

2 �
	 ��t; �t��ṙi�t 


�t

2 � � mi
�1Fi�t��t�, (24)

where �(t; �t) is a time- and time step-dependent velocity scaling
factor. Imposing the constraint �(t; 0) � 1, one recovers eq. (23)
in the limit of an infinitesimal time step �t, with

GROMOS Software for Biomolecular Simulation 1725



��t� 	 �
��(t; �t)

�(�t)
�

�t�0

. (25)

The Woodcock thermostat19 (also known as temperature con-
straining thermostat; see also the Hoover–Evans thermostat25,26)
aims at fixing the instantaneous temperature � exactly at the
reference heat-bath value To, without allowing for any fluctua-
tions. In this case, the quantity �(t; �t) in eq. (24) is found by
imposing �[t � (�t/ 2)] � ( g/Ndf)To, leading to

��t; �t� 	 �
g

Ndf

To

���t �
�t

2 �	
1/ 2

, (26)

where ��[t � (�t/ 2)] is the temperature evaluated from the
velocities ṙ�i[t � (�t/ 2)] in eq. (24). The corresponding quantity
�(t) in eq. (23) is given by

��t� 	 � gkBTo�
�1 �

i�1

N

ṙi�t� � Fi�t�. (27)

Although g � Ndf seems to be the obvious choice, it turns out that
g � Ndf � 1 is the appropriate one for the algorithm to generate
a canonical distribution of configurations (although obviously not
of momenta) at temperature To.7,21,25 The reason is that constrain-
ing the temperature effectively removes one degree of freedom
from the system. Note, however, that the absence of kinetic energy
fluctuations may lead to inaccurate dynamics, especially in the
context of the microscopic systems typically considered in simu-
lations.

The Berendsen thermostat20 (also known as weak-coupling
thermostat) aims at relaxing the instantaneous temperature � to the
reference heat-bath value To based on a first-order (weak-cou-
pling) scheme with a characteristic time �B, that is, as

�̇�t� 	 �B
�1�To 
 ��t�
. (28)

In this case, the quantity �(t; �t) in eq. (24) is found by imposing
�[t � (�t/ 2)] � �[t � (�t/ 2)] � �B

�1�t( g/Ndf){To � �[t �
(�t/ 2)]}, where, in principle, g � Ndf, leading to

��t; �t� 	 
 �� t 

�t

2 �
��� t �

�t

2 �
� �B

�1�t

g

Ndf
To 
 ��t 


�t

2 �
���t �

�t

2 � �
1/ 2

� 
1 � �B
�1�t�

g

Ndf
To

���t �
�t

2 �

 1	�

1/ 2

. (29)

In GROMOS05, the algorithm is implemented following the sec-
ond (approximate) expression. For either of the two expressions,
the corresponding quantity �(t) in eq. (23) is given by

��t� 	
1

2
�B

�1� g

Ndf

To

�(t)

 1�. (30)

In practice, �B is used as an empirical parameter to adjust the
strength of the coupling to the heat bath. In the limit �B � �t, the
Berendsen algorithm is equivalent to the Woodcock algorithm
(and thus generates a canonical distribution of configurations, but
not of momenta). In the limit �B 3 
, the thermostat becomes
inactive and the Newton equation of motion is recovered (which
samples a microcanonical ensemble). However, except in the
former limit (and only for the configurational part), the ensemble
generated by the Berendsen equations of motion is not a canonical
ensemble.27

The Nosé–Hoover thermostat21,22 aims at relaxing the instan-
taneous temperature � to the reference heat-bath value To based
on an extended-system approach with a characteristic time �NH. In
the original Nosé algorithm,28 the real system is extended by
addition of an artificial (Ndf � 1)th (positive) dynamical variable s
(associated with a “mass” Q � 0 as well as a velocity ṡ), that
plays the role of a time-scaling parameter. Through an appropriate
choice for the extended-system Lagrangian, a microcanonical MD
trajectory in the extended system can be mapped onto a canonical
trajectory in the real system. However, the Nosé thermostat leads
to sampling of the real-system trajectory at uneven time intervals,
which is quite impractical. This inconvenience is alleviated by
rewriting the equations of motion in terms of the real-system
variables, as was later shown simultaneously by Nosé21 and
Hoover.22 In the Nosé–Hoover algorithm, the quantity �(t) in eq.
(23) is not uniquely determined by the instantaneous microstate of
the system, but is a dynamical variable where the derivative is
determined by this instantaneous microstate through

�̇ 	 ��NH
�2

�

To
� g

Ndf

To

�

 1�, (31)

where the effective coupling time �NH is related to the (less
intuitive) effective mass Q in the Nosé thermostat through

�NH 	 �NdfkBTo�
�1/ 2Q1/ 2. (32)

When � is negative, heat flows from the heat bath into the system
due to eq. (23). When the system temperature increases above To,
the time derivative of � becomes positive in eq. (31) and the heat
flow is progressively reduced (feedback mechanism). Conversely,
when � is positive, heat is removed from the system until the
system temperature decreases below To and the heat transfer is
slowed down. In practice, eq. (31) is discretized (based on the
simulation time step �t) and integrated simultaneously with the
equations of motion for the atomic coordinates and velocities
based on the leapfrog scheme.

It can be proven7,22 that the Nosé–Hoover equations of motion
sample a canonical ensemble (in both coordinates and momenta)
provided that g � Ndf and that �NH is finite, this irrespective of the
actual value of �NH and of the initial conditions for the atomic
velocities and for the � variable.

In practice �NH is used as an empirical parameter to adjust the
strength of the coupling to the heat bath. Too large values of �NH

1726 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



(loose coupling) may cause a poor temperature control (the limit-
ing case of the Nosé–Hoover thermostat with �NH3 
 and �(0) �
0 is MD, which generates a microcanonical ensemble). On the
other hand, too small values (tight coupling) may cause high-
frequency temperature oscillations leading to the same effect.

The Nosé–Hoover chain thermostat23 aims at relaxing the
instantaneous temperature � to the reference heat bath value To

based on a chain of successive thermostat variables. In this case the
single thermostat variable � of the Nosé–Hoover scheme is re-
placed by a chain of variables applying a thermostat to each other
in sequence. This algorithm has been introduced to alleviate the
two main drawbacks of the Nosé–Hoover algorithm: (1) the pres-
ence of temperature oscillations, and (2) the nonergodicity of the
sampling for small or stiff systems, or systems at low tempera-
tures.22,29–34 The GROMOS05 implementation follows the for-
malism described in the original article.23

Barostat Algorithms

For compatibility with the experiment, it is often desirable to
sample configurations from the isothermal–isobaric ensemble
(constant temperature and pressure). Thermostat algorithms have
been described above. A modification of the basic MD scheme
with the purpose of maintaining the pressure constant (on average)
is called a barostat algorithm.

The use of a barostat is only applicable to simulations under
periodic boundary conditions. In the GROMOS05 implementation
(both PROMD and MD��), the various options for the variations
for the box parameters (and the associated scaling of atomic
coordinates) involved in the use of a barostat are: (1) no variations
of the box parameters; (2) isotropic scaling, that is, identical
relative variations of the box-edge lengths only; (3) partially
anisotropic scaling, that is, independent relative variations of the
box-edge lengths only; (4) fully anisotropic scaling, that is, inde-
pendent variations of all box parameters (box-edge lengths, box
angles, and Euler angles). For a truncated-octahedral box, only the
first two options are allowed. For a rectangular box, only the first
three options are allowed. For a triclinic box, all options are
allowed. In the latter case, variations in the box shape are accom-
panied by variations in the box Euler angles, so as to guarantee that
the barostat does not introduce a rigid-body rotational component
to the box orientation. Note, however, that the location of the box
center of mass is affected by any type of coordinate scaling.

Two different barostat algorithms are available (1) pressure
relaxation by weak-coupling (Berendsen barostat20); (2) pressure
relaxation by extended-system method (Andersen–Parrinello–Rah-
man barostat21,28,35–40).

Pairlist Construction

The evaluation of the nonbonded interactions in GROMOS relies
on the application of the twin-range method.41–44 The GRO-
MOS05 implementation (both PROMD and MD��) of this ap-
proach includes an increased amount of flexibility, and relies on
the definition of: (1) a short-range pairlist distance Rp; (2) a
corresponding cutoff distance R̃p � Rp (optional); (3) a lower
bound for the intermediate-range pairlist distance Rs; (4) a corre-
sponding cutoff distance R̃s � Rs (optional); (5) an upper bound

for the intermediate-range pairlist distance Rl; (6) a corresponding
cutoff distance R̃l � Rl (optional); (7) a short-range pairlist update
frequency Ns; (8) an intermediate-range pairlist update frequency
Nl. Short-range interactions are computed every time step based
on a short-range pairlist containing pairs in the distance range [0;
Rp], or a filtered subset of this list corresponding to pairs currently
(i.e., at the given timestep) in the distance range [0; R̃p]. The
short-range pairlist is reevaluated every Ns time steps. It can be
generated either on the basis of distances between charge groups
(groups of covalently linked atoms defined in the system topology)
or of distances between individual atoms. In the former case, the
filtering (based on the distance R̃p) may be based either on dis-
tances between charge groups or on distances between atoms. In
the latter case, only atom-based filtering is possible. Intermediate-
range interactions are computed every Nl time steps based on all
pairs in the distance range [Rs; Rl], or a filtered subset of these
pairs in the distance range [R̃s; R̃l] at the time of the evaluation of
these interactions. Only an atom-based filtering is possible here,
and it is only meaningful when the initial set of pairs is generated
on the basis of distances between charge groups. The energy,
forces, and virial contributions associated with intermediate-range
interactions are assumed constant between two updates (i.e., dur-
ing Nl steps).

The evaluated interaction includes Lennard–Jones and electro-
static components. The latter component may include a reaction-
field contribution or the real-space contribution to a lattice-sum
method. Note that the real-space contribution to a lattice-sum
method may only be computed within the short-range contribution
to the interaction.

The pairlist construction may be performed in four different
ways: (1) using the standard double-loop algorithm included in the
GROMOS96 program3 (merely extended to include the possibility
of an atom-based cutoff and of filtering); (2) using an optimized
version that improves processor cache usage; (3) using a grid-
based pairlist algorithm introduced recently45 (PROMD only); (4)
using a slight variation of the above grid-based algorithm,45 which
permits easier parallelization and avoids periodicity corrections
during the interaction evaluation (MD�� only).

Pairlist construction with optimized processor cache usage. An
improved version of the standard double-loop algorithm is imple-
mented in PROMD, which tries to optimize processor cache usage.
Figure 2 illustrates the basic idea for a coordinate set of N � 10
atoms (or charge groups). In a double loop running over atom
indices, the standard algorithm of GROMOS96 scans the atom pair
matrix row by row to decide whether a given pair of atoms needs
to be included in the pairlist (unshaded box). For very large N, the
fast but small processor cache obviously needs to be reloaded
many times. If we assume that this cache can hold the coordinates
of Ncache atoms at a time, then a total of Ncache � 1 atom pairs can
be treated per cache reload. Scanning the atom-pair matrix with
quadratic (light gray shade) or rhombic (dark gray shade) windows
is obviously more efficient, because O(Ncache

2 ) atom pairs can be
treated per cache reload. The triangular matrix of atom pairs (Fig.
2, top) can be reordered into a rectangular one by simply aligning
every row to the left, chopping off the right half and appending
each of its columns to the rows of the lower portion of the matrix

GROMOS Software for Biomolecular Simulation 1727



as shown in Figure 2 (bottom). In practice, the same rectangular
matrix is more conveniently generated from two coordinate vec-
tors, the second one being twice as long as the first one and
containing, consecutively, two identical copies of the first one (i.e.,
1, 2, 3, . . . , N � 1, N, 1, 2, 3, . . . , N � 1, N). To generate
the entire rectangular matrix, one simply needs to shift the two
vectors with respect to each other, by 1 for the first column, by 2
for the second, and so on. The formerly rhombic window becomes
quadratic in the reordered matrix, and all rows are of equal length,
which makes the algorithm simpler. Some consideration is neces-
sary to handle the last column adequately, because for even N it
contains each atom pair in duplicate. The new algorithm requires
somewhat more memory than the traditional implementation as it
maintains three copies of the same coordinate set. In principle,
however, it can handle a total of (Ncache � 1)2/nine atom pairs
(rather than Ncache � 1) in a given amount of fast processor cache.
In practice, along with additional code optimization but also ad-
ditional postprocessing necessary to generate properly ordered
pairlists, we observe speedup factors of about 2–3 for the pairlist
construction in applications to medium-sized and large systems on
personal computers (see Table 2 for overall efficiency; timings are
given for complete simulations including pairlist construction and
force calculation). A shared-memory OpenMP (www.openmp.
org)-style parallel version of the algorithm has also been imple-
mented, which distributes the workload, window by window, over
several processors.

Grid-based pairlist construction. PROMD includes a recently in-
troduced45 grid-based pairlist algorithm that permits the fast con-
struction of cutoff-based nonbonded pairlists in molecular simu-

lations under periodic boundary conditions based on an arbitrary
box shape (rectangular, truncated-octahedral, or triclinic). The key
features of this algorithm are: (1) the use of a one-dimensional
mask array (to determine which grid cells contain interacting
atoms) that incorporates the effect of periodicity, and (2) the
grouping of adjacent interacting cells of the mask array into
stripes, which permits the handling of empty cells with a very low
computational overhead. Testing of the algorithm on water sys-
tems of different sizes (containing about 2000 to 11,000 mole-
cules) has shown that the method: (1) is about an order of mag-
nitude more efficient compared to a standard (double-loop)
algorithm, (2) achieves quasi-linear scaling in the number of
atoms, (3) is weakly sensitive in terms of efficiency to the chosen
number of grid cells.

MD�� includes a slightly modified version of this grid-based
pairlist algorithm following ideas similar to those of a published
pairlist algorithm.46,47 In an effort to reduce the number of nearest
image determinations during the pairlist generation (or filtering)
and the nonbonded force calculation, the system gets extended on
all sides before the pairlist construction. The additional atom or
charge-group positions are obtained by simple shifts of the original
positions by the box vectors. To allow for more efficient (distrib-
uted-memory) parallelization and to save money, the central com-
putational box is divided into N layers. Each of the P parallel
processes only has to extend over N/P layers. After every exten-
sion, the atom pairs consisting of one atom within the layer and a
second atom from one of the above (not extended) layers are added
to the respective pairlist (using a one-dimensional mask array).
Filtering or energy and force evaluation can then be carried out
right away (without nearest image determinations owing to the
preshifted atomic positions), or at a later stage with the information
on the shift vectors encoded into the pairlist, thus enabling a fast
reconstruction of the shifted positions.

Reaction-Field Electrostatics

When cutoff truncation is applied to the Coulombic interactions
within a molecular system, the mean effect of the omitted electro-
static interactions beyond the (long-range) cutoff distance Rl may
be approximately reintroduced through a so-called reaction-field
correction term.48–51 This approximation relies on assuming that
the medium beyond the cutoff sphere of each particle (i.e., beyond
a specified distance RRF, typically set equal to Rl) is a linearized
Poisson–Boltzmann continuum characterized by a relative dielec-
tric permittivity � and an inverse Debye screening length �. In the
present context, these two parameters may be combined into an
effective permittivity51

�RF 	 �1 �
(�RRF)

2

2(�RRF � 1)��. (33)

In the GROMOS05 implementation (both PROMD and
MD��), the corresponding overall electrostatic energy (Coulomb
plus reaction-field term) is then written52

�el
CB�RF 	

1

4��o 
�
i

�
j�i, j�excl�i�,r� ij�Rl

qiqj�r�ij
�1 �

2(�RF 
 1)

2�RF � 1

r�ij
2

2RRF
3

Table 2. Efficiency Comparison of GROMOS96 [FORTRAN, Standard
Pairlist Algorithm (STD), and Pairlist Algorithm with Optimized Cache
Usage (OPT)] and MD�� [C��; Standard Pairlist Algorithm (STD),
and Grid-Based Pairlist Algorithm (GRID)].

GROMOS96
PROMD MD��

STD OPT STD GRID

Alkane Single 166 102 214 49 (45)
Dual — 61 121 40 (30)

Membrane Single 67 57 95 55 ( )
Dual — 34 60 43 (29)

Protein Single 175 148 349 140 ( )
Dual — 82 187 90 (64)

As test systems liquid alkane (23,328 solute atoms, 9.4 � 9.4 � 9.4 nm
cubic box), a membrane [6656 solute atoms, 7383 solvent (SPC water)
atoms, 6.2 � 6.2 � 6.9 nm rectangular box], and a protein [2445 solute
atoms, 47,472 solvent (SPC water) atoms, 7.9 � 7.9 � 8.3 nm rectangular
box] were used. All calculations were done on a dual-processor AMD
Athlon MP 248 PC (2000-MHz processor frequency, 512-kb cache, 2-GB
RAM). The efficiency was measured running on a single processor and
running in parallel on both processors, 250 simulation steps for the alkane
and membrane system, 100 steps for the protein. All numbers are in
seconds. For MD��, the time spent doing interaction calculations is given
in parentheses.

1728 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry





3�RF

2�RF � 1

1

RRF� � �
i

�
j�i, j�excl�i�

qiqj�2(�RF 
 1)

2�RF � 1

r�ij
2

2RRF
3



3�RF

2�RF � 1

1

RRF� 

1

2

3�RF

2�RF � 1

1

RRF ��
i

qi
2 
 �RF

�1��
i

qi�2��,

(34)

where �o is the permittivity of vacuum, r�ij is the minimum-image
vector corresponding to rij � ri � rj, and excl(i) denotes the
exclusion list of atom i (including its first and second covalent
neighbors; the distance between any two excluded atoms is as-
sumed to be smaller than Rl). Note that current simulation pro-
grams (e.g., GROMOS963 and GROMACS53) typically restrict the
implementation of the reaction-field method to the first term in eq.
(34). The second term is explicitly included here because excluded
neighbors should only be exempted from the direct (Coulombic)
interaction and not from the solvent-mediated (reaction-field) in-
teraction.52 The form of the third term has been chosen for con-
sistency in the context of small molecules (compared to the cutoff
radius and box size). For such a small molecule (or ion) gathered
by periodicity around its center, r� ij can be replaced by rij and the
cutoff truncation involved in the first summation of eq. (34) can be
omitted. In this case, it can be shown52 that the reaction-field
contribution to �el

CB�RF for a neutral molecule matches the correct
Onsager expression for the solvation of a dipolar molecule in a
spherical cavity54 (for � � 0). For a monoatomic ion, the last term
can also be shown52 to represent a (first-order) correction to the
error in solvation free energy caused by the use of effective
(non-Coulombic) interactions. Intuitively, this last term may be
interpreted as the reversible work required to individually charge
the atoms when they are at infinite separation. This contribution
only affects the energy of the system, but does not induce atomic
forces. However, it may be essential to include it in free-energy
calculations involving alterations of the atomic partial charges and
comparisons between different media (�).

Lattice-Sum Electrostatics

Lattice-sum methods for evaluating electrostatic interactions in
simulations under periodic boundary conditions (only available in
PROMD) rely on two key principles: (1) the treatment of electro-
static interactions as exactly periodic within the periodic sys-
tem.55–58 (2) the splitting of these interactions into a short-range
component, evaluated by direct summation over atom pairs, and a
long-range component, evaluated by Fourier series.56,59,60

From a physical point of view, the straight application of
lattice-sum methods (with so-called tinfoil boundary conditions,
that is, omitting any extrinsic potential contribution) implicitly
relies on four modifications of electrostatic interactions compared
to the naive picture of assembling an infinite number of copies of
the reference computational box in vacuum:60 (1) inclusion of a
homogeneous background charge density within the infinite peri-
odic system (of magnitude related to the net charge of the com-
putational box), that enforces a vanishing net charge in the sys-
tem;55 (2) inclusion of a surface charge (with a distribution related
to the box dipole moment relative to its center) at the surface of the

infinite periodic system, that enforces a vanishing average electric
field within the system; (3) inclusion of a homogeneous surface
dipole layer (of magnitude related to the trace of the box quadru-
pole moment relative to its center) at the surface of the infinite
periodic system, that enforces a vanishing average potential within
the system; (4) suppression of the orientational preferences result-
ing from a fluid–vacuum interface at the surface of the system,
which is effectively equivalent to the inclusion of a compensating
homogeneous dipole layer at the surface of the infinite periodic
system. These physical modifications have subtle consequences on
the simulated properties of molecular systems, which can be al-
tered (on the basis of physical arguments) by the introduction of a
so-called extrinsic potential contribution (consisting of a uniform
electric field and a constant potential offset). However, the appro-
priate form for this extrinsic term is still matter of considerable
debate.56,58,60–82 The PROMD implementation for this term is
discussed elsewhere.60

The splitting of the electrostatic interactions into a short-range
and a long-range component relies on the use of a charging-
shaping function a�3�(a�1r) of width a. The charge-shaping
functions implemented in PROMD are the Gaussian and optimized
truncated polynomials of orders 0 to 10,59 as listed in Table 3. The
specific choice of a function must be made before compiling the
program (macro definition).

The two lattice-sum methods available differ in the way they
evaluate the reciprocal-space interactions.56 The Ewald method83

is based on a direct summation over reciprocal-space lattice vec-
tors, while the particle–particle–particle–mesh (P3M) method84

makes use of grid discretization and fast Fourier transform (FFT)
algorithms. In the PROMD implementation, both lattice-sum
methods can also be applied to emulate truncated electrostatic
interactions with a reaction-field correction, according to the lattice
sum emulated reaction field (LSERF) scheme.60

Reciprocal lattice. In the triclinic case, the reciprocal-lattice vec-
tors ã, b̃, and c̃ associated with the box edge vectors a, b, and c are
defined by

ã 	 V�1b 
 c, b̃ 	 V�1c 
 a and c̃ 	 V�1a 
 b, (35)

where V is the box volume. The matrix containing in its columns
the components of ã, b̃, and c̃ in the reference Cartesian coordinate
system (ex, ey, ez) is easily shown to be

� ãx b̃x c̃x

ãy b̃y c̃y

ãz b̃z c̃z

� 	 tL� �1 	 R� tS� �1. (36)

A reciprocal-space vector k is defined by

k 	 2��laã � lbb̃ � lcc̃�, (37)

where l � (la, lb, lc) is a vector with integer (positive or negative)
components. Based on a general triclinic box in an arbitrary
orientation, a reciprocal-space vector may be specified through the
integer vector l, through oblique fractional coordinates � � (�u,
�v, �w) with reference to the reciprocal-lattice vectors, or through

GROMOS Software for Biomolecular Simulation 1729



coordinates k � (kx, ky, kz) within the reference Cartesian
coordinate system. The different coordinates are related through

� 	 2�l and k 	 tL� �1� 	 2�tL� �1l. (38)

Scalar products between real- and reciprocal-space vectors can be
formulated equivalently in the different coordinate representations,
that is,

k � r 	 � � �. (39)

Definitions. The following discussion considers a periodic system
of Nq charges qi at positions ri within a general triclinic compu-
tational box with arbitrary orientation. It is convenient to define the
box overall charge

S 	 �
i�1

Nq

qi, (40)

and the box overall square charge

S̃2 	 �
i�1

Nq

qi
2. (41)

Lattice-sum methods rely on the use of the charge-shaping
function a�3�(a�1r) of width a (Table 3) to split the electrostatic
potential into a real-space contribution and a reciprocal-space
contribution, plus a constant. The charge-shaping function is nor-
malized to satisfy the condition

4�a�3 �
0




drr2��a�1r� 	 1. (42)

The following definitions are related to the charge-shaping func-
tion. The Fourier coefficients of (a lattice sum of) the charge-
shaping function are given by

�̂�ak� 	 
4�k�1a�3 �
0




drr sin�kr���a�1r� for k � 0

1 for k 	 0

. (43)

The switch function �(a�1r) associated with the charge-shaping
function is defined by

��a�1r� 	 4�a�3 �
r




d���� 
 r���a�1��. (44)

Finally, the constants A1, A2, and A3 are defined as

A1 	 �4�V�1 �
0




drr��a�1r�, (45)

A2 	 4�V�1 �
l��3,l�0

k�2�̂�ak�, (46)

A3 	 lim
r30

� �
n��3

�r � L� n��1�(a�1�r � L� n�) 
 r�1�. (47)

In the (common) case where

��a�1r� 	 0 for r � min�Lx, Ly, Lz� (48)

is (exactly or approximately) valid, eq. (47) becomes

Table 3. Charge-Shaping Functions Available in PROMD.

N� m ��(�)

�1 
 ��1/2e��2

0 0 (3/4)H(1 � �)
1 1 3(1 � �)H(1 � �)
2 2 (15/2)(1 � �)2H(1 � �)
3 2 (15/4)(1 � �)2(1 � 2�)H(1 � �)
4 3 (105/16)(1 � �)3(3� � 1)H(1 � �)
5 4 (21/2)(1 � �)4(4� � 1)H(1 � �)
6 4 (63/8)(1 � �)4(5�2 � 4� � 1)H(1 � �)
7 5 (45/4)(1 � �)5(8�2 � 5� � 1)H(1 � �)
8 6 (165/32)(1 � �)6(35�2 � 18� � 3)H(1 � �)
9 6 (165/64)(1 � �)6(64�3 � 69�2 � 30� � 5)H(1 � �)

10 7 (2145/128)(1 � �)7(21�3 � 19�2 � 7� � 1)H(1 � �)

N�: reference code of the function (N� � 0 . . . 10: Optimal TP-Function59 of order N�; N� � �1:
Gaussian); m: convergence rate of �̂(�) toward zero (convergence is as ��(m�2) when � 3 
; see
eq. (43), where � � ak); ��(�): charge-shaping function amplified by � (the actual shaping function
is a�3�(a�1r)); H(�): Heaviside function (H(�) � 1 when � � 0, zero otherwise). Note that the
Gaussian function is infinite-ranged, while all other functions vanish for � � 1.

1730 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



A3 	 lim
r30

r�1���a�1r� 
 1
. (49)

In this case, A1 and A3 have analytical expressions for a given
charge-shaping function. The above derived quantities56,59 are
listed in Tables 4, 5, and 6 for the charge-shaping functions of
Table 3.

Electrostatic interaction energy. The electrostatic reversible-
charging (free) energy �el

LS of the periodic system of charges under
tinfoil boundary conditions can be computed as56

�el
LS 	 �� � �� � �A � �

slf,
(50)

with

�� 	 �2�oV��1 �
i�1

Nq �
j�1

Nq

qiqj �
l��3,l�0

k�2�̂�ak�cos�k � rij�, (51)

�� 	 �4��o�
�1 �

i�1

Nq �
j�i

Nq

qiqj �
n��3

�rij � L� n��1��a�1�rij � L� n��,

(52)

�A 	 �8��o�
�1�A1S

2 
 � A1 � A2�S̃2
, (53)

Table 4. Switch Functions Corresponding to the Charge-Shaping Functions Available in PROMD
(see Table 3).

N� �(�)

�1 erfc(�)
0 (1/2)(1 � �)2(� � 2)H(1 � �)
1 (1 � �)3(� � 1)H(1 � �)
2 (1/2)(1 � �)4(3� � 2)H(1 � �)
3 (1/4)(1 � �)4(4�2 � 7� � 4)H(1 � �)
4 (1/8)(1 � �)5(15�2 � 19� � 8)H(1 � �)
5 (1 � �)6(3�2 � 3� � 1)H(1 � �)
6 (1/16)(1 � �)6(35�3 � 66�2 � 51� � 16)H(1 � �)
7 (1/8)(1 � �)7(32�3 � 49�2 � 31� � 8)H(1 � �)
8 (1/16)(1 � �)8(105�3 � 136�2 � 73� � 16)H(1 � �)
9 (1/32)(1 � �)8(160�4 � 335�3 � 312�2 � 151� � 32)H(1 � �)

10 (1/128)(1 � �)9(1155�4 � 2075�3 � 1665�2 � 697� � 128)H(1 � �)

N�: reference code of the function; �(�): switch function (the real-space interaction function is
r�1�(a�1r)); erfc: complementary error function.

Table 5. Fourier Coefficients Corresponding to the Charge-Shaping
Functions Available in PROMD (see Table 3).

N� �N��3�̂(�)

�1 �2e��2/4

0 3[��C � S]
1 12[2 � 2C � �S]
2 60[2� � �C � 3S]
3 90[8 � (�2 � 8)C � 5�S]
4 630[8� � 7�C � (�2 � 15)S]
5 5040[4(�2 � 6) � (�2 � 24)C � 9�S]
6 7560[48� � (�2 � 57)�C � 3(4�2 � 35)s]
7 75600[24(�2 � 8) � 3(5�2 � 64)C � (�2 � 87)�S]
8 831600[8�(�2 � 24) � (�2 � 123)�C � (18�2 �

315)S]
9 1247400[192(�2 � 10) � (�4 � 207�2 � 1920)C �

(22�2 � 975)�S]
10 16216200[64�(�2 � 30) � (26�2 � 1545)�C � (�4 �

285�2 � 3465)S]

N�: reference code of the function; �N��3�̂(�): Fourier coefficient ampli-
fied by �N��3 (the actual Fourier coefficient is �̂(ak)); C: short notation
for cos(�); S: short notation for sin(�).

Table 6. A-Constants Corresponding to the Charge-Shaping Functions
Available in PROMD (See Table 3).

N� �V��1a�2A1 �aA3

�1 1 2��1/2

0 2/5 3/2
1 4/15 2
2 4/21 5/2
3 3/14 9/4
4 1/6 21/8
5 2/15 3
6 8/55 45/16
7 4/33 25/8
8 4/39 55/16
9 10/91 105/32

10 2/21 455/128

N�: reference code of the function; �V��1a�2A1: constant A1 amplified
by �V��1a�2; �aA3: constant A3 amplified by �a. The results for A3

are derived assuming the validity of eq. (48).

GROMOS Software for Biomolecular Simulation 1731



and

�slf 	 �8��o�
�1�A1 � A2 � A3�S̃

2. (54)

The interpretation of the different contributions to �el in eq.
(50) is given below, with reference to the following terminology
for charge densities (which can be added to or subtracted from one
another): point charge ( p), �-shaped charge (�), and homogeneous
background charge (b). The term �� represents the electrostatic
energy (including self-interaction) of a set of ( p � b)-charges of
magnitude {qi} at positions {ri} in the potential generated by the
corresponding periodic system of (� � b)-charges. Because this
potential is a nonsingular and generally smooth function of posi-
tion, �� is conveniently evaluated in reciprocal space, using the
Ewald method83 or the P3M method.84 The term �� represents the
electrostatic energy (excluding self interaction) of a set of ( p �
b)-charges of magnitude {qi} at positions {ri} in the potential
generated by the corresponding periodic system of ( p � �)-
charges. With an appropriate choice of charge-shaping function,
the function �(a�1r) can be made a quickly decreasing function of
distance, in which case �� is conveniently evaluated by direct
(real-space) summation over the charge pairs. The terms �A and
�slf are configuration-independent. The term �A eliminates the
self-energies present in �� and contains a small correction due to
the constraint of zero average potential within the periodic system.
The term �slf accounts for the self-energy of set of ( p � b)-
charges of magnitude {qi} in the potential generated by the corre-
sponding periodic system of (p � b)-charges (Wigner term83–87).

Constant and self-energy terms. The constant term �A and the
self-energy term �slf are given by eqs. (53) and (54), respectively,
where the A-constants are defined by eqs. (45), (46), and (47) or
(49). Note that these terms give rise to no force contribution (but
a virial contribution).

In the general case, the constant A2 must be computed numer-
ically by direct summation. In the PROMD implementation, this is
done by evaluating

A2�lmax� 	 4�V�1 �
l��3,l�0,lx,ly,lz�lmax

k�2�̂�ak� (55)

for increasing values of lmax, until a user-specified relative toler-
ance is reached. In the specific case of a cubic unit cell of edge L,
this evaluation is replaced by49,87 A2 	 �EWL�1 � A1 � A3 with
�EW 	 �2.83792748. The calculation of A2 with a reasonably
high precision is somewhat expensive and may be either (1)
omitted; (2) performed once at the beginning of the simulation; (3)
performed whenever an energy output is required; (4) performed
every step. With the first choice, A2 is set to zero and the A2

contributions are omitted in the evaluation of both �A and �slf

[eqs. (53) and (54)]. As a consequence, the splitting between
pairwise and self-contributions becomes arbitrary, but the sum of
the two quantities (and thus the overall electrostatic energy) re-
mains correct (within the approximation A2 	 Ã2, see below). The
second choice is intended for constant-volume simulations. The
two last choices are for constant-pressure simulations, the latter

one being the more accurate (but also computationally more ex-
pensive).

The quantity A2 calculated through eq. (55) represents the exact
(in the limit of large lmax) value of A2 used in the calculation of
�slf . However, because the reciprocal-space interaction energy is
evaluated with a finite precision (i.e., through the Ewald or P3M
method), this value of A2 will only approximately remove the
reciprocal-space self-energy when included in �A . Although for
most practical purposes, this approximation is sufficient, it is
possible to compute a more accurate method-dependent value Ã2

to be used in the evaluation of �A, that is,

�A 	 �8��o�
�1�A1S

2 
 � A1 � Ã2�S̃2
, (56)

The calculation of this quantity is feasible for either the Ewald or
P3M method, as detailed elsewhere.13

Real-space contribution. In the most general form, the real-space
contribution to the electrostatic interactions is given by eq. (52),
together with the corresponding forces and virial contribution. In
practice, it is assumed that the charge-shaping function satisfies the
condition

��a�1r� 	 0 for r � Rp with Rp � �1/2�min�Lx, Ly, Lz�,

(57)

where Rp is the short-range cutoff distance applied to real-space
interactions, which implies that the switch function �(a�1r) also
vanishes beyond Rp. In this case, and taking into account that
Coulombic interaction between minimum-image pairs of excluded
covalent neighbors should be removed, one may rewrite eq. (52) as

�� 	 �4��o�
�1 �

i�1

Nq �
j�i, j�excl�i�,r� ij�Rp

Nq

qiqjr�ij
�1��a�1r�ij�

� �4��o�
�1 �

i�1

Nq �
j�i, j�excl�i�

Nq

qiqjr�ij
�1���a�1r�ij� 
 1
, (58)

where the distance between any two excluded atoms is assumed to
be smaller than Rp. When using a truncated-polynomial charge-
shaping function,59 the evaluation of �� is exact provided that all
atom pairs within a distance smaller than a are included into the
short-range pairlist at any time step. When using a Gaussian
function, it is always approximate (in practice a 	 Rp/3 is a
reasonable choice).

Reciprocal-space contribution via Ewald. In the Ewald method,83

the reciprocal-space contribution �� defined by eq. (51), as well as
the corresponding forces and virial, are evaluated by direct sum-
mation over reciprocal-lattice vectors.

For improved computational speed the triple-sum (over l, i, and
j) in eq. (51) is rewritten as a double-sum (over l and i) and
truncated at a given reciprocal-space cutoff lc, as

1732 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



�� 	 �2�oV��1 �
l�lc

k�2�̂�ak��C2�k� � S2�k�
, (59)

with the definitions

C�k� 	 �
i�1

Nq

qicos k � ri and S�k� 	 �
i�1

Nq

qisin k � ri. (60)

A further increase in computational efficiency can be obtained by
noting that the terms in the l-sum involved in eq. (59) are invariant
upon changing k to �k. Thus, the summation can be restricted to
a half-space and the resulting energies, forces, and virial contri-
bution multiplied by 2. In the case of a rectangular box, further
symmetry considerations allow to restrict the summation to a
single octant.

Reciprocal-space contribution via P3M. In the P3M method,84 the
reciprocal-space contribution �� defined by eq. (51), as well as the
corresponding forces and virial, are evaluated by discretization of
the triclinic computational box by means of a grid (mesh) and use
of a FFT algorithm. The number of grid subdivisions along each of
the box axes must be even.

The algorithm consists of six steps:56 (1) assignment of the
charge density associated with the atomic partial charges to the
grid points by means of an assignment function; (2) conversion of
the charge density grid to reciprocal space by means of a three-
dimensional fast Fourier transform (3D-FFT); (3) solution for the
reciprocal-space electrostatic potential via multiplication by an
optimized influence function; (4) conversion of the reciprocal-
space potential grid to real space by means of a 3D-FFT; (5)
evaluation of the electrostatic field on the grid by means of a
finite-difference operator; (6) interpolation of the field at the loca-
tion of the atomic partial charges by means of the same assignment
function used in the first step. In the ik-differentiation variant,87,88

the fifth and sixth steps are replaced by: (5) evaluation of the
reciprocal-space field through multiplication by ik; (6) conversion
of the reciprocal-space field grid to real space by means of three
3D-FFTs, one for each field component.

The influence function describes the electrostatic potential gen-
erated at the different grid points by a unit (� � b)-charge at the
origin. It is stored in the form of its corresponding value at each of
the reciprocal-space grid points. A key to the accuracy of the
algorithm is to preoptimize this function so that it compensates for
errors inherent to the discretization process, the use of an approx-
imate assignment function, and the use of an approximate finite-
difference operator.84 When the virial is to be calculated or when
the box dimensions may vary in the course of a simulation, six
grids are computed simultaneously, containing the relevant deriv-
atives of the optimal influence function with respect to the box
parameters.13 The optimization of the influence function (and the
evaluation of its derivatives when required) is computationally
expensive. In simulations without variations of the box parameters,
however, this function is constant (as well as its derivatives), and
the calculation needs to be performed only once at the beginning
of a simulation. In simulations involving a variation of the box
parameters, the accuracy of the influence function may progres-

sively deteriorate with time as the box changes shape and size.
Two mechanisms are then used to improve the accuracy of the
current influence function at reasonable computational costs. First,
the derivative information computed together with the optimized
influence function is used to apply a first-order correction to the
current influence function upon variation of the box parameters.13

Second, the accuracy of the algorithm88 may be reevaluated at
periodic intervals, and a reoptimization of the influence function
(and recalculation of its derivatives) undertaken when this accu-
racy falls below a user-specified threshold.

In the following paragraphs, the P3M algorithm is described in
more details.

A general triclinic box may be discretized by means of a grid
G, defined by the number of subdivisions Na, Nb, and Nc along
the a, b, and c box-edge vectors. It will be convenient to introduce
the diagonal matrix N� with elements Na, Nb, and Nc. The matrix
H� is then defined as

H� 	 �Na
�1ax Nb

�1bx Nc
�1cx

Na
�1ay Nb

�1by Nc
�1cy

Na
�1az Nb

�1bz Nc
�1cz

� 	 L� N� �1. (61)

The volume of a grid cell is noted VG � �H� �.
Each point of the real-space grid G is associated with an index

n � (na, nb, nc), with na � [0; Na � 1], nb � [0; Nb � 1],
and nc � [0; Nc � 1]. Points outside this range are periodic
copies of points within the range. The real-space vector corre-
sponding to a grid point n may be written in the different repre-
sentations:

�n 	 N� �1n and rn 	 H� n. (62)

Similarly, each point of the reciprocal-space grid G is associated
with an index l � (la, lb, lc), with la � [�Na/ 2 � 1; Na/ 2],
nb � [�Nb/ 2 � 1; Nb/ 2], and nc � [�Nc/ 2 � 1; Nc/ 2]. Points
outside this range are periodic copies of points within the range.
The reciprocal-space vector corresponding to a reciprocal-space
grid point n may be written in the different representations as

�l 	 2�l and kl 	 2�tL� �1l. (63)

All gridded functions, that is, real- or reciprocal-space functions
that only take a value at a grid point of G, will be indicated with
a “g” subscript.

The forward 3D-FFT operation converts a gridded function
fg(rn) on the grid G into its finite Fourier coefficients f̂g(kl) on the
same grid, as

f̂g�kl� 	 VG �
n�G

fg�rn�e
�ikl�rn. (64)

The backward 3D-FFT performs the reverse operation, namely,

fg�rn� 	 V�1 �
l�G

f̂g�kl�e
ikl�rn. (65)

GROMOS Software for Biomolecular Simulation 1733



The P3M algorithm starts by distributing the Nq atomic partial
charges qi at locations ri within the computational box onto the
neighboring grid points (taking periodicity into account), so as to
generate the charge-density grid sg. This assignment is performed
as

sg�rn� 	 �
i�1

Nq

qi�g�rn; ri� (66)

with

�g�rn; r� 	 P�rn 
 r�, (67)

where P is a so-called assignment function (discussed in more
details in the next subsection). The charge density grid is then
converted to its (complex) reciprocal-space representation ŝg(kl)
by applying a forward 3D-FFT to sg(rn).

The reciprocal-space potential, that is, the potential generated
by the corresponding gridded (� � b)-charges is then computed in
reciprocal space as

�̂�,g�kl� 	 �o
�1Ĝg

†�kl�ŝg�kl�, (68)

where Ĝg
† represents the Fourier coefficients of the influence

function. If all charges were located exactly at grid points or if the
grid spacing was infinitesimal, the quantity Ĝg

† would be given by
kl

�2�̂(akl). However, in practice, a significant gain in accuracy is
reached by optimizing Ĝg

† to compensate for errors linked with the
discretization procedure, taking into account possible variations in
the shape and size of the computational box. To this purpose, the
influence function Ĝg

† is defined as13

Ĝg
†�kl� 	 Ĝg

o�kl� 
 Tr��̂�g
o�kl��

tL� o��1�tL� 
 tL� o�
, (69)

where Ĝg
o is the influence function optimized for a given set L� o of

box parameters and �̂�g
o contains the corresponding first-order de-

rivative information in the form

�̂
�

g
o�kl� 	 �

�Ĝg
o�kl�

�L� o
tL� o. (70)

The calculation of the quantities Ĝg
o and �̂g

o is described in more
details in the next subsection. The optimal influence function Ĝg

o is
only optimal for a specific set L� o of box parameters L� . When the
shape and size of the computational box may vary, the second term
in eq. (69) includes a first-order correction to the influence function
optimized at L� o, based on the derivative information calculated
simultaneously.

The reciprocal-space contribution �� to the total electrostatic
energy is given by

�� 	 �2�oV��1 �
i�1

Nq �
j�1

Nq �
l�G,l�0

qi�̂g�kl; ri�qj�̂*g�kl; rj�Ĝg
†�kl�. (71)

For computational efficiency, this pairwise sum is evaluated as a
single sum, through

�� 	 �2�oV��1 �
l�G,l�0

Ĝg
†�kl��ŝg�kl��2. (72)

The (approximate) forces associated with the energy contribu-
tion �� are obtained through the evaluation of the gridded field Eg

and its interpolation at the location of the charges. The reciprocal-
space force on atom i is then written as

F�,i 	 qiE�ri� (73)

with

E�r� 	 VG �
n�G

P�r 
 rn�Eg�rn�. (74)

The same assignment function P should be used here and for the
charge assignment, to ensure conservation of the total linear mo-
mentum during the dynamics.84 The gridded field Eg to be used in
eq. (74) can be obtained in either of two ways.

The first method (finite-difference) relies on performing a back-
ward 3D-FFT of the potential to obtain the (real) real-space po-
tential, and using a finite-difference approximation to compute the
gridded field as

Eg�rn� 	 � �
n��G

iVGDg�rn 
 rn����,g�rn��, (75)

where iVGDg is a so-called finite-difference operator (discussed in
more details in the next subsection).

The second method (ik-differentiation) relies on computing the
exact gridded field in reciprocal-space as88,89

Êg�kl� 	 �ikl�̂�,g�kl�. (76)

One then performs three backward 3D-FFTs (one for each Carte-
sian component) to obtain the corresponding (real) quantity Eg in
real-space.

Quantities involved in the P3M algorithm. The assignment func-
tion P of order p [eqs. (67) and (74)] performs the distribution
(interpolation) of a continuous function at an arbitrary location
onto (from) values at the neighboring p3 grid points. This function
is defined as56

P�r� 	 VG
�1 �

n��3

P̃�r � L� n� (77)

with

P̃�r� 	 wp��H� �1r
a�wp��H� �1r
b�wp��H� �1r
c�. (78)

Here, wp(�) is a normalized one-dimensional function vanishing
for ��� � p/ 2. These functions are listed in Table 7. The assign-

1734 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



ment scheme is formulated in terms of oblique coordinates. Thus,
in the general case, the distribution (interpolation) of the function
from (at) an arbitrary location onto (from) the neighboring grid
points is not necessarily correlated with the Cartesian distance
between the points (this is only the case for a rectangular compu-
tational box).

The Fourier coefficients P̂ of the assignment function P are
given by

P̂�k� 	 ŵp��
tH� k
a�ŵp��

tH� k
b�ŵp��
tH� k
c�, (79)

where ŵp(�) is the continuous Fourier transform of wp(�), which
evaluates to

ŵp��� 	 �2��1sin��/2�
p�1 
 ��� � ��. (80)

The finite-difference operator iVGDg of order q estimates the
gradient of a given function at a grid point based on the values of
the function at the 6q neighboring grid points along the three box
axes. The operator Dg is defined as56

Dg�rn� 	 �
j�1

q

cjdg, j�rn�. (81)

In this expression, the centered-difference operator iVGdg, j gen-
erates the gradient contribution evaluated from the function at the
six neighboring points distant from the grid point by �jNa

�1a,
�jNb

�1b, and �jNc
�1c along the three box axes. The operator dg, j

is given by

dg, j�rn� 	 R� S�eg, j�rn�, (82)

where R� and S� are the matrices defined in eqs. (4) and (5), eg, j is
the corresponding operator in terms of oblique fractional coordi-
nates, that is,

eg, j,a�rn� 	 iVG
�1�2jNa

�1a��1�nb�nc �
m��

��na�j�Nam 
 �na�j�Nam�,

(83)

with similar expressions for the b and c components.
The Fourier coefficients D̂g of the operator Dg are given by

D̂g�kl� 	 �
j�1

q

cjd̂g, j�kl�, (84)

where

d̂g, j�kl� 	 R� tS� �1êg, j�kl� (85)

and

êg, j,a�kl� 	 � jNa
�1a��1sin� j�tH� kl
a�, (86)

with similar expressions for the b and c components. Taken
together, eqs. (84), (85), and (86) may be written

D̂g�kl� 	 tH� �1 �
j�1

q

cjj
�1�sin( j[tH� kl]a)

sin( j[tH� kl]b)
sin( j[tH� kl]c)

�. (87)

Note that the exact difference operator (as used in ik-differentia-
tion) corresponds to

D̂g�kl� 	 kl. (88)

For a given finite-difference operator of order q, the coefficients cj

in eq. (81) may be selected so as to minimize the difference
between the corresponding finite-difference operator and the ex-
act-difference operator. In reciprocal space, this leads to the re-
quirement

tH� �1 �
j�1

q

cjj
�1�sin(2�jNa

�1la)
sin(2�jNb

�1lb)
sin(2�jNc

�1lc)
� � kl. (89)

Solving the resulting system of equations results in the optimal
coefficients listed in Table 8.

Table 7. One-Dimensional Functions wp(�) Used to Define the Assignment Functions [eqs. (77)
and (78)].

p wp(�) Range

1 1 ��� � 1/2
2 1 � ��� ��� � 1
3 �(3/4)(4�2 � 1) ��� � 1/2

(1/8)(2��� � 3)2 1/2 � ��� � 3/2
4 (1/6)(3���3 � 6�2 � 4) ��� � 1

�(1/6)(��� � 2)3 1 � ��� � 2
5 (1/192)(48�4 � 120�2 � 115) ��� � 1/2

�(1/96)(16�4 � 80���3 � 120�2 � 20��� � 55) 1/2 � ��� � 3/2
(1/384)(2��� � 5)4 3/2 � ��� � 5/2

The functions wp(�) vanish for ��� � p/ 2.

GROMOS Software for Biomolecular Simulation 1735



For a given set of box parameters characterized by the matrix
L� o, the influence function that optimally compensate for discreti-
zation errors can be computed as84

Ĝg
o�kl� 	

D̂g�kl� � �¥m��3 kl,mkl,m
�2�̂�akl,m�P̂2�kl,m�


D̂g
2�kl��¥m��3 P̂2�kl,m�
2 , (90)

where

kl,m 	 kl�N� m 	 kl � 2�tH� �1m (91)

is an alias vector of k (with m � �3). Equation (90) is valid for l
� G and l � 0, together with Ĝg(0) � 0. In practice, the
summation over alias vectors is restricted to m vectors with integer
components in the range [�mmax . . . mmax]. A value of 2 or 3 for
mmax is usually sufficient to reach convergence. The quantity P̂ is
given in by eq. (79), the quantity D̂g by eqs. (87) (finite-difference)
or (88) (ik-differentiation), and the quantity �̂ by eq. (43) (see
Table 4). The negative derivative of the optimal influence function
with respect to the box parameters L� o, amplified on the right by
tL� o may be calculated simultaneously with the influence function
as

�̂� g
o�kl� 	

1

D̂g
2�kl��¥m��3 P̂2�kl,m�
2 �

m��2

P̂2�kl,m�

kl,m
2 

kl,m � D̂g(kl)

� D̂g(kl) � kl,m 

2[kl,m � D̂g(kl)]kl,m � kl,m

kl,m
2



2[kl,m � D̂g(kl)]D̂g(kl) � D̂g(kl)

D̂g
2(kl)

��̂(akm)

�
[kl,m � D̂g(kl)]kl,m � kl,m

kl,m
2 akl,m�̂�(akl,m)� (92)

with �̂�(�) � d�̂(�)/d� valid for l � G and l � 0, together with
�̂�g

o � 0� .

Replica-Exchange Simulation

To obtain canonical distributions for complex molecular systems,
efficient sampling of the configurational space is necessary. Find-
ing the global minimum on the typically rough potential energy
landscape of a peptide or protein is likewise difficult. In recent
years, the replica-exchange method90–95 (also known as parallel

tempering95) has received much attention. A number of noninter-
acting replicas are simulated simultaneously at different conditions
(e.g., different temperatures). After a given simulation time, an
exchange between two replicas is attempted, followed by another
(individual) simulation period. The method has been applied to
biomolecular systems,96–99 using Monte Carlo (MC) techniques
and molecular dynamics (REMD) to propagate the individual
replicas. The probability of each state x � (r, p) in the canonical
ensemble at temperature T is proportional to the weight factor

W� x� 	 exp���H�r, p��, (93)

where H is the Hamiltonian and � � 1/kBT, kB being Boltz-
mann’s constant. The weight factor for the global state X deter-
mined by the states of the M replicas is the product of the single
weights, that is,

WREM�X� 	 exp���
i�1

M

�iH(ri, pi)�. (94)

After a fixed number of MD integration steps, an MC exchange
between two replicas is attempted (changing from state X to state
X�). To sample canonical ensembles at each temperature, the
detailed balance condition on the transition probability w(X3 X�)

WREM�X�w�X 3 X�� 	 WREM�X��w�X� 3 X� (95)

has to be fulfilled. This can be satisfied, for instance, by the usual
Metropolis criterion

p�X 3 X�� 	
w�X 3 X��

w�X� 3 X�
	 
1 for � � 0,

exp(��) for � � 0 , (96)

with

� 	 ��i 
 �j��U�rj� 
 U�ri��, (97)

where U(r) is the potential energy associated with the configura-
tion r. If the exchange was successful, the momenta of the ex-
changed replicas are scaled to correspond to their new tempera-
tures.

An extension of the replica-exchange method to sample the
isothermal–isobaric ensemble has been suggested.100 In this case,
an additional term incorporating the pressure and volume change
appears in the exchange probability

� 	 ��i 
 �j��U�rj� 
 U�ri�� � ��iPi 
 �jPj��Vj 
 Vi�. (98)

Unfortunately, the application of the REMD method to explicit
solvent simulations, although successful for small systems, is
rather difficult.101–107 Because the exchange probability between
two states decreases with increasing system size, explicit-solvent
simulation requires many more states (replicas) separated by small
temperature differences. This problem may be alleviated by not
exchanging a thermodynamic property like the temperature be-
tween the individual replica, simulations but rather altering spe-

Table 8. Optimal Weighting Coefficients cj ( j � q) for the Finite-
Difference Operator.

q c1 c2 c3 c4 c5

1 1
2 4/3 �1/3
3 3/2 �3/5 1/10
4 8/5 �4/5 8/35 �1/35
5 5/3 �20/21 5/14 �5/63 1/126

1736 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



cific interactions.108–110 Then, the replicas are distinguished by
their Hamiltonians

Hi�ri, pi� 	 K�pi� � Ui�ri� (99)

using for each simulation a different potential energy function Ui.
In MD�� the different Hamiltonians Hi are defined using a
coupling parameter � and a perturbation topology. The replica with
�i � 0 corresponds to state A (normal topology) in a perturbation
simulation, the replica at �i � 1 to state B (fully perturbed state;
with, e.g., scaled-down nonbonded or bonded interaction terms).
The other replicas are distributed in between these two (0 � �i �
1).

Inserting the individual Hi into eq. (94), leads to

WREM�X� 	 exp���
i�1

M

�iHi(ri, pi)�, (100)

and, using the detailed balance criterion to

p�X 3 X�� 	
w�X 3 X��

w�X� 3 X�
	 
1 for � � 0,

exp(��) for � � 0, (101)

with

� 	 �i�Ui�rj� 
 Ui�ri�� 
 �j�Uj�rj� 
 Uj�ri��, (102)

where the potential energy of the two configurations ri and rj

needs to be evaluated twice, with Hamiltonians Hi and Hj.
The replica-exchange method was implemented in MD��

based on sockets and tcp as communication protocol. A server
distributes the short MD runs corresponding to the different rep-
licas to a (dynamical) number of clients. After a given number of
simulation steps has been carried out, the client reports back to the
server the final (potential) energies (evaluated using the Hamilto-
nian Hi and the Hamiltonian Hj (if different), and the final con-
figuration. The server then calculates the switching probability p(i
3 j), draws a random number and, if the switch is successful,
exchanges the states. As soon as a client is free, the next replica
gets assigned to it.

Replicas can differ in the temperature and in the coupling
parameter �. A replica-exchange state consists of replicas for all
possible � values at each temperature Ti (M � N� � NT replicas).
The MC exchange attempt is alternated between exchanges of
(neighboring) �’s and temperatures T.

Coarse-Grained Simulation

Most molecular simulations are making use of atom-level (AL)
models. This limits the time scale of such simulations for solvated
macromolecules to the nanosecond range. Longer time scales can
be reached by treating molecules or molecular fragments as single
particles or beads, whose motion is simulated using a simple force
field describing interbead interactions. When the energy function
of such a coarse-grained (CG) model is chosen to be smooth and
short-ranged, the efficiency of CG simulations can be orders of

magnitude (103–105) higher than the corresponding AL simula-
tions, be it at the expense of the loss of atomic detail and some
accuracy.111–115

A recently proposed CG model116 for liquid simulations has the
same functional form as the GROMOS force field,3,117 except for
the use of a switching function118 for the nonbonded Lennard–
Jones and electrostatic interactions at distances just below the
cutoff distance. This CG model was implemented into GRO-
MOS05 (MD�� only), however with a slightly different switch-
ing function, because the GROMACS one118 appeared to be dis-
continuous and led to nonconservation of energy in MD
simulation.

In the absence of switching, the nonbonded interaction energy
between particles i and j can be written as (rij � ri � rj)

V�rij� 	 �
��1,6,12

V��rij� 	 �
��1,6,12

c����rij� (103)

with (r � �r�)

���r� 	 r�� (104)

and

c1 	
qiqj

4��0�1

c6 	 �4�ij�ij
6 	 �C6�i, j�

c12 	 �4�ij�ij
12 	 �C12�i, j�, (105)

where standard notations for atomic charges (qi) and van der
Waals interaction parameters (C6 and C12) have been used. In the
CG model all nonbonded interactions are smoothly switched to
zero over the range [Rsw, Rc], where Rsw denotes the start of the
switching and Rc the cutoff radius. In this model116 one has Rc �
1.2 nm and Rsw � 0 nm for the Coulomb interaction and Rsw �
0.9 nm for the van der Waals interactions. The nonbonded inter-
action energy function including switching reads for the three
terms in eq. (103)

��
s �r� 	 
��(r) r � Rsw

��(r) � S�(r) Rsw � r � Rc

0 r � Rc

. (106)

Requiring that the functions S�(r) switch the energy, the force,
and the derivative of the force smoothly (without discontinuities)
to zero at r � Rc, yields the conditions

S��Rsw� 	 S���Rsw� 	 S���Rsw� 	 0 (107)

and

��
s �Rc� 	 ��

s��Rc� 	 ��
s��Rc� 	 0. (108)

The conditions of eq. (107) are satisfied by a fourth-degree poly-
nomial

GROMOS Software for Biomolecular Simulation 1737



S��r� 	 �
1

3
A�r 
 Rsw�3 


1

4
B�r 
 Rsw�4 
 C. (109)

The conditions of eq. (108) determine the constants

A 	
���� � 1� Rsw 
 �� � 4�Rc


Rc
��2�Rc 
 Rsw�2 , (110)

B 	 �
���� � 1�Rsw 
 �� � 3�Rc


Rc
��2�Rc 
 Rsw�3 , (111)

C 	
1

Rc
� 


1

3
A�Rc 
 Rsw�3 


1

4
B�Rc 
 Rsw�4. (112)

The expression for the shifted or switched force on particle i by
particle j for the three nonbonded interaction terms V�

s (rij) is then

f�i
s �rij� 	 �

�V�
s �rij�

�rij

�rij

�ri
	 �c���

s��rij�
rij

rij
, (113)

with

��
s��r� 	 
���(r) r � Rsw

���(r) � S��(r) Rsw � r � Rc

0 r � Rc

, (114)

����r� 	
��

r��1 , (115)

and

S���r� 	 �A�r 
 Rsw�2 
 B�r 
 Rsw�3. (116)

We note that the switched potential energy determined by eq.
(106) and forces from eq. (113) are only correct for a distance
dependence of the potential energy function of the form of eq.
(104). So, it cannot be used in the presented form if the soft-core
interaction or reaction field forces as defined in GROMOS are to
be used.

Free-Energy through One-Step Perturbation

The calculation of relative binding free energies of many ligands to
a common receptor is of relevance for drug design and screening
purposes, and for obtaining a better understanding of interactions
governing molecular complexation in general. The one-step per-
turbation technique119 allows for the calculation of a great many
relative free energies from a single simulation of a (not necessarily
physically meaningful) reference state.120–127 The idea behind the
method is to simulate a judiciously chosen reference compound R
generating an ensemble of structures that contains conformations
representative for many physically relevant compounds. The free
energy difference between any real ligand A and the reference
compound R can be obtained from the perturbation formula

�GAR 	 �GA 
 �GR 	 �kBT ln�e��HA�HR�/kBT�R, (117)

where the angular brackets indicate the ensemble average of the
configurations generated in a simulation of R. HA and HR are the
Hamiltonians for the real compound ( A) and the reference com-
pound (R), respectively. Because this expression involves the
difference between two Hamiltonians, only interactions that differ
between compounds A and R need to be reevaluated over the
ensemble. This allows for the calculation of thousands125 to mil-
lions126 of relative free energies from a handful of simulations of
reference states R.

The success of the method critically depends on the choice of
the reference state R; it should allow wide sampling, but not so
wide that insufficient statistics is obtained. One of the key elements
that allow wide sampling is the use of soft-core nonbonded inter-
actions, which allows for a spatial overlap between these atoms. In
GROMOS96, the soft-core nonbonded interaction was chosen to
be of the form3,4,119

Vsc�rij� 	
4�ij�ij

6

sLJ�i, j��2�ij
6 � rij

6 � �ij
6

sLJ(i, j)�2�ij
6 � rij

6 
 1�

�
qiqj

4��0�1
� 1

(sC(i, j)�2 � rij
2)1/ 2 


1

2
Crfrij

2

(sC(i, j)�2 � Rrf
2 )3/ 2 


1 

1

2
Crf

Rrf
	.

(118)

In GROMOS96, the soft-core parameters sLJ and sC were taken
equal for all soft-core atom pairs. In GROMOS05 (MD�� only),
sLJ(i, j) and sC(i, j) are calculated by combining the distinct
softness parameter specified per atom, allowing fine tuning of the
reference state, that is,

s�i, j� 	 

1

2
(s(i) � s( j)) s(i) � 0, s( j) � 0

s(i) s(i) � 0, s( j) 	 0
s( j) s(i) 	 0, s( j) � 0
0 s(i) 	 0, s( j) 	 0.

(119)

The GROMOS�� postprocessing programs pt_top (to gen-
erate a real topology from a topology and a perturbation topology)
and ener (to recalculate the interaction energy of specified atoms)
or m_pt_top and m_ener (to do the same for multiple physical
compounds at the same time), and dg_ener (to calculate the
relative free energies) may be used to analyze the reference state
ensemble.

Features under Construction

A number of algorithmic and force field developments are cur-
rently investigated and only provisionally implemented in GRO-
MOS05. These are not yet part of the standard software.

Polarizability

During the past decade, the accuracy of the GROMOS force field
could still be improved by reparametrizing it to reproduce the
thermodynamic properties of small molecules.117,128,129 The latest
parameter set, 53A6, reproduces the free energies of apolar (cy-

1738 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



clohexane) and of polar (water) solvation for typical biomolecules
to within 1–2 kJ mol�1 (about kBT/ 2).117 However, this study
indicated that the lack of explicit electronic polarizability is lim-
iting a further increase in the accuracy of nonpolarizable force
fields. Various possibilities to explicitly account for polarizability
in MD simulations have been reviewed.130 In our view, the most
promising approach in terms of striking a balance between accu-
racy on the one hand and simplicity and computational efficiency
on the other is the so-called charge-on-spring (COS) type of
models.131 A COS model for polarizable water that is, in principle,
compatible with the GROMOS type of force fields has been
developed132,133 and a GROMOS software version with COS
polarization is in its test phase, based on the implementation
previously sketched.130

Enhanced One-Step Perturbation

The efficiency of the one-step perturbation technique can be en-
hanced along two lines. First, because the choice of the nonphys-
ical reference state R is completely free, even nonatomic reference
compounds can be used.127 Using the concept of soft-core atoms,
one may use atoms of dual character in the reference compound:
atom i may interact through a soft-core interaction with atom j, but
through a normal interaction with atom k. In this manner the part
of the system that is softened to enhance the sampling can be
restricted such that no unnecessary softness is introduced that
aggravates the sampling. Second, when evaluating the difference
HA � HR in eq. (117), the Hamiltonian HA(rR) or energy of the
real compound A is to be calculated using the ensemble rR of
configurations of the reference compound R in the trajectory of R.
This requires a definition of the interaction sites of HA in terms of
atom (mass) positions of HR, which should be the same for all
configurations of the trajectory of R. However, because eq. (117)
is independent of translation and rotation of the coordinate system
that is used to define HA, additional sampling in the form of
translation and rotation of the real compound with respect to the
trajectory configurations of the reference compound R can be
carried out,122 for example, through limited translation and rota-
tion. Furthermore, if the reference compound is composed of
atomic soft sites on each of which more than one real ligand atom
can be superimposed, the calculation of HA � HR for the many
combinations of real ligand atoms at the different soft sites can be
decomposed in single soft-site calculations, of which the contri-
butions to HA � HR can be added. This allows a considerable
increase in efficiency.

Code Organization, Implementation

MD Engine in FORTRAN: PROMD

The FORTRAN MD engine (PROMD) is an enhancement of the
GROMOS96 MD engine. It is written in FORTRAN77 except for
the use of included files and macro preprocessing. Macros are in
particular used to get rid of unnecessary features (such as four-
dimensional simulation, unused periodicity code, or unused per-
turbation code) so as to improve the performance for specific
applications through the use of a specialized code. To facilitate

performance tuning, timing routines have been included, and the
time spent within various components of the program is reported at
the end of each simulation. Major additional algorithmic features
(with respect to GROMOS96) have been described (see earlier).

MD Engine in C��: MD��

The C�� MD engine (MD��) has been written from scratch.
The major motivation was to further increase the modularity and
therefore the extendability of the MD program. The code is split
into two parts, the first one being an MD library containing basic
functions necessary to run an MD simulation, the second one being
the actual MD program. This second part is very small. It is
therefore easy to write other specialized MD programs that make
use of a subset of the functions provided in the library or apply
them in a different order. The source code of the library is, in turn,
split up into nine different parts: math, simulation, topology, con-
figuration, algorithm, interaction, io, util, and check (represented
as C�� namespaces).

● math contains classes for vectors, matrices, and vector arrays,
mathematical operations, physical constants, and periodic
boundary treatment.

● simulation contains the simulation parameters supplied to run an
MD or SD simulation or an EM.

● topology contains the topology of the simulated system, possibly
also including a perturbation topology.

● configuration contains the state of a system: its coordinates,
velocities, forces, restraints data, and so on.

● algorithm contains classes that use information from simulation
and topology to act upon a configuration. All steps during an
MD or SD simulation or EM can be carried out using an
algorithm.

● interaction contains the largest algorithm: the energy, forces,
and virial evaluation. Here, all interaction terms and their pa-
rameters are defined. Because of its size, interaction is a separate
part, although it formally belongs to algorithm. The interaction
part is further split into bonded, nonbonded, and special inter-
actions.

● io contains classes to read in or write out information. All file
access is block oriented and the files are human readable.

● util contains a few extra classes that are necessary to set up a
simulation but which do not exactly belong to it. Parsing of
command line arguments, generation of initial velocities, or
setting of debug levels are examples of classes found herein.

● check contains test routines. Testing includes the automatic
calculation of energies under different conditions as well as the
calculation of forces, virial tensor, and energy �-derivatives and
their comparison to values obtained by finite difference calcu-
lations.

One step of an MD or SD simulation or EM consists of several
Algorithms (Fig. 3) applied to the Configuration in the
right order. The Algorithm_Sequence class (Fig. 4) is a
container for all these algorithms. When a simulation is set up,
they are inserted in the correct order into the Algorithm_Se-
quence. Before the start of a simulation, all algorithms will be
initialized (by calling the init ( ) function). During an MD

GROMOS Software for Biomolecular Simulation 1739



step (Algorithm_Sequence::run( )), the algorithms are
applied (by calling Algorithm::apply( )). The force
field itself is also an algorithm, which, when applied, calcu-
lates the energies, forces, and virial contribution of all force field
terms for the complete system. The force field terms themselves
are Interaction classes. The Forcefield is therefore a con-
tainer to store the different Interaction objects (in analogy to
the Algorithm_Sequence and Algorithm classes). When
the force field is applied, it calls calculate_interac-
tions( ) on all interaction objects. There are distinct interac-
tion objects for the covalent interactions (bond length, bond angle,
improper–dihedral, and torsional–dihedral interactions), the non-
bonded interactions (pairlist construction, long-range interactions,
and short-range interactions) and the nonphysical interactions
(atom position, atom distance, dihedral angle, NOE, or J-value
restraints). It is very easy to add a custom Interaction class to
calculate a nonstandard interaction.

The classes corresponding to the steps in the MD, SD, or EM
algorithm are shown in Table 9 and an overview of the (non-
bonded) interaction classes is given in Figure 5. The Nonbond-
ed_Sets contain independent subsets of the nonbonded interac-
tions. Their calculate_interactions ( ) method may be
called in parallel (using either shared or distributed memory
parallelization). The Nonbonded_Sets share (through the
Nonbonded_Interaction) a pairlist construction algorithm,
which they call to create the part of the complete pairlist relevant
to them. These different parts of the pairlist stay together with the
Nonbonded_Set and need never be assembled into the complete
pairlist. To gain flexibility, the calculation of the individual atom–
atom pair interaction is further split up into a Nonbonded-
_Outerloop (loops over the atom–atom pairs), a Nonbond-
ed_Innerloop (prepares the parameters necessary to calculate
the interaction), and a Nonbonded_Term (calculates the atom–
atom pair interaction energy, force, and virial contribution). The
Storage class provides directly accessible (local) memory for
each Nonbonded_Set.

Efficiency

The main goal for writing a new C�� MD engine was to further
improve on modularity (using some object-oriented features) and
extendability (using clear and common interfaces between the
modules). Nevertheless, a simulation code has to be reasonably
efficient to be of practical use. The complete code is written in
standard C��,134 no language extensions or machine-specific
parts are used anywhere, resulting in a highly portable program.
This means that the compiler has to do all machine-specific opti-
mizations. We believe that the absence of any machine-specific
parts of code, which require duplication to be able to run on
different machines, facilitates future modification. Furthermore,
current compilers are getting ever better at producing fast pro-
grams, making use of the specific features available on the ma-
chine.

In the inner loops of the interaction calculation, templates
are used to generate specialized code. There are, for instance,
specialized periodicity classes for the different implemented types
of periodic boundary conditions (vacuum, rectangular, truncated
octahedral, and triclinic). The Innerloop methods are called
with the boundary type as a template argument. Thus, the compiler
will generate different specialized versions of the inner loops for
different boundary conditions automatically. In the same manner,
the interaction function term of the nonbonded interaction can also
be chosen (e.g., with or without switching function for nonbonded
interactions) without any if statement required in the compiled
inner loop. An example code fragment is shown in Figures 6 and
7. The same technique is used to implement perturbation simula-
tions and different definitions of the virial tensor.

Some algorithms do rely on information from the previous
integration step. To help implementing those kind of algorithms,
the complete current and old state (positions, velocities, forces,
energies, restraint and constraint data, averages, and so on) of the
simulation are stored. During the leap-frog algorithm, the current
state becomes the old state and the updated information is stored in
the new current state. This transfer is done by a simple (and fast)
pointer exchange. This duplication slightly increases memory us-
age (but the required space is still small compared to that used to
store the pairlists).

A comparison of the efficiency of the C�� code with respect
to the GROMOS96 MD engine (in FORTRAN) is given in TableFigure 3. Interface of the Algorithm class.

Figure 4. Interface of the Algorithm_Sequence class.

1740 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



2. This comparison shows that MD��, using the standard pairlist
algorithm is approximately a factor 2 slower than GROMOS96
(standard pairlist algorithm); improved algorithms (like a grid-
based pairlist construction) may have a large impact on the per-
formance reducing the time spent to two-thirds for the membrane
and even by a factor of 3 for the protein system. Note that the
optimized pairlist construction algorithm implemented in the FOR-
TRAN MD engine (PROMD) only benefits from more efficient
processor cache usage but still scales as O(N2) with system size.
Still, for the systems tested here, it achieves equal overall effi-
ciency as the O(N) scaling grid-based pairlist algorithm in
MD��. The future will show whether the improved extendability
of MD�� will, through improved algorithms, lead to a faster
C�� code than the FORTRAN (PROMD) code, or whether
slightly inferior performance is the price to pay for a more struc-
tured code layout.

Debugging Information

It is often difficult to figure out what is going on during an MD or
SD simulation or an EM, and many users tend to use the program
as a black box. MD�� tries to improve this situation by enabling
the user to select a tunable amount of information to be printed out
during the simulation. Every (output or debugging) message is
associated with a debugging level, and the message is printed only
if the requested debugging level is high enough. Additionally,
every code section belongs to a module and a submodule. Different
debug levels can be specified for all combinations of modules and
submodules. In that way, fine-grained control is achieved on how

much information from which part of the MD�� code should be
printed.

Parallelization

Computationally, the interaction calculation is by far the most
expensive part of an MD or SD simulation or an EM, while the
nonbonded interactions constitute the bulk of the effort. Again,
MD�� is focused on achieving parallelization without compli-
cating the code. The nonbonded interaction is split up into Non-
bonded_Sets, each containing its own storage space for a
pairlist, energies, forces, and virials. In this way, the standard code
is ready for shared and distributed memory parallelization without
any need for code duplication. If the system is using distributed
memory, the (updated) positions have to be copied from the master
to all other processes before the next interaction calculation. While
composing the pairlist in parallel, only a subset of atoms is
considered per process, so that each processor creates its own
partial and local pairlist. The interactions are calculated from this
partial pairlist and stored in local arrays. This ensures synchroni-
zation for shared memory machines and replicated data parallel-
ization for distributed memory systems. After the partial interac-
tion calculations have finished, the energies, forces, and virials of
all nonbonded sets are summed up and stored in the Configu-
ration of the master process.

MD�� can use OpenMP (www.openmp.org) for shared mem-
ory and MPI (www.mpi-forum.org) for distributed memory paral-
lelization. Reasonable parallelization (using a small number of
parallel processes) can be achieved with only a few additional lines

Table 9. Classes Corresponding to MD Algorithm Steps.

1. Write position and velocity components. Out_Trajectory
2. Remove center of mass motion. Remove_COM_Motion
3. Calculate (unconstrained) forces and energies from the potential energy function

(using nearest image convention in case of periodic boundary conditions).
Forcefield
Bond_Interaction
Angle_Interaction
Improper_Dihedral_Interaction

Save these. Dihedral_Interaction
Nonbonded_Interaction
Position_Restraints_Interaction
Distance_Restraints_Interaction
NOE_Restraints_Interaction
JValue_Restraints_Interaction

4. Satisfy position constraints. Position_Constraints_Interaction
5. Update the velocities using the leapfrog scheme. Leapfrog_Velocities
6. Apply temperature coupling [weak coupling or Nosé–Hoover(-chains)]. Berendsen_Thermostat

Nose_Hoover_Thermostat
7. Update the positions using the leapfrog scheme. Leapfrog_Positions
8. Satisfy distance constraints (using SHAKE, M-SHAKE, or LINCS). Shake

MShake
Lincs

9. Calculate temperature(s). Temperature_Calculation
10. Calculate pressure. Pressure_Calculation
11. Apply pressure scaling (weak coupling). Berendsen_Barostat
12. Update lambda and topology for slow-growth simulations. Slow_Growth
13. Calculate total energies, averages, and fluctuations. Energy_Calculation

Save these.

GROMOS Software for Biomolecular Simulation 1741



of code (almost) completely separate from the nonbonded routines
(see Table 2).

Analysis Modules: GROMOS��

All the FORTRAN analysis programs of GROMOS96 have been
rewritten in C��. They accept a standard set of command line
arguments to specify input. It is easy to add new analysis programs
using the functionality provided within the GROMOS�� library.
Following is a short description of the existing programs.

Setup of Simulations (Preprocessing)

● make_top builds a topology from a building block sequence.
● com_top combines two topologies.
● con_top converts topologies to a different force field param-

eter set.

● red_top reduces topologies by specified parts.
● pt_top combines topologies with perturbation topologies to

produce new topologies or perturbation topologies.
● pert_top creates a perturbation topology to perturb specified

atoms to dummies.
● check_top checks topologies for common mistakes.
● pdb2g96 converts a pdb (Protein Data Bank) structure into

GROMOS coordinates.
● build_box builds a simulation box containing N molecules at

a specified density.
● ran_box builds a simulation box containing N molecules at a

specified density, placing and orienting them randomly.
● bin_box builds a simulation box containing a binary mixture

at a specified density.
● sim_box puts a simulation box around a molecule and fills it

with solvent molecules from an equilibrated solvent configura-
tion.

Figure 5. Illustration of the Interaction classes in MD��. The red arrows denote a is-a relation-
ship, the black arrows has-a. All Interaction classes inherit from Interaction and, therefore, can
be stored in the Force field, which is a vector of Interaction classes. The Nonbonded_I-
nteraction consists of a Pairlist_Algorithm (either a Standard_Pairlist_Algorithm
or a Grid_Pairlist_Algorithm) and (depending on parallelization) one or more Nonbonded-
_Sets. Those, in turn, consist of Storage (to locally store forces, energies, virial tensor, and pair lists)
and an Outerloop (to calculate the interactions). The Outerloop relies on the Innerloop and on
Term to calculate the interactions. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

1742 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



● ran_solvation builds a simulation box around a molecule
and fills it randomly with solvent molecules.

● check_box checks box properties (size).
● copy_box multiplies a box in any direction.
● explode increases intermolecule distances to vacuum condi-

tions.
● cry applies rotations and translations to a system to create a

crystal unit cell.
● ion replaces a specified number of solvent molecules by ions.
● gch generates hydrogen atom coordinates for a molecule.
● gca generates atomic Cartesian coordinates from a set of inter-

nal coordinates.
● mk_script prepares an MD, SD, or EM job script.

Analysis of Trajectories (Postprocessing)

● tstrip removes solvent from a trajectory.
● filter filters out specified atoms from a trajectory.

● cog calculates center of geometries for specified atoms.
● tser calculates time series of specified properties (distances,

angles, torsions, order parameters, etc.).
● tcf calculates time correlation functions of time series.
● dist calculates distributions of specified properties.
● ditrans monitors dihedral-angle transitions.
● propertyrmsd calculates root-mean-square differences for a

set of properties.
● dipole calculates dipole moments with respect to the center of

molecules.
● rmsd calculates atom-positional root-mean-square differences

between structures.
● rmsf calculates atom-positional root-mean-square fluctuations

for specified atoms.
● ene_ana calculates averages, fluctuations, and error estimates

for energies, pressure, and volume.
● epsilon calculates the dielectric permittivity for liquids.
● visco calculates the shear viscosity of liquids.
● rgyr calculates the radius of gyration.
● rdf calculates the radial distribution function for selected at-

oms.
● mdf gives the time series of the closest particle index to a

selected atom.
● m_widom performs widom particle insertion.
● sasa calculates the solvent accessible surface area (SASA) for

a specified part of a molecule.
● hbond analyses hydrogen bonding.
● dssp analyses secondary structure elements.
● prep_noe prepares for an NOE calculation.
● noe calculates NOE distances.
● post_noe analyses NOE distances.
● oparam calculates order parameters for lipids in membranes.
● nhoparam calculates N—H order parameters.
● diffus calculates the diffusion coefficient of specified atoms.
● rmsdmat calculates the RMSD between all structure pairs in a

trajectory.
● cluster analyses an RMSD matrix to separate the structures

into clusters.
● postcluster analyses the cluster output for lifetimes, fold-

ing pathways, and central-member structures.
● iondens calculates ion densities.
● edyn performs an essential dynamics analysis.
● rot_rel calculates the rotational relaxation time for solvent

molecules.
● ener calculates any energy for a system.
● espmap calculates the vacuum electrostatic potential on a grid

Figure 7. Using the interaction class.

Figure 6. Specialized code generation using templates.

GROMOS Software for Biomolecular Simulation 1743



around selected molecules of a given configuration from the
partial charges in the topology.

Miscellaneous

● frameout converts trajectories into other formats or extracts
snapshots from trajectories.

● inbox puts the solute into the center of the box.
● atominfo prints (topological) information on specified at-

oms.
● shake_analysis analyses a specified configuration.
● cmt_list lists atoms within a specified distance from a given

atom.

Examples of Application

Local-Elevation Simulation of Glucose

The technique of local-elevation (LE) MD has been developed to
enhance the searching of the configurational space of a molecule
by progressively elevating the local potential energy of the con-
figurations that are visited during an MD trajectory.135 The total
potential energy function consists of two terms: the standard
physical terms Vphys(r(t)), and the local-elevation term VLE(r(t),
t), which depends also explicitly on the time t. When the molecule

Figure 8. Glucose molecule with atom numbering.

Figure 9. Time course of the six torsional dihedral angles of the glucose ring as obtained from
standard MD (a) and local-elevation (LE-) MD (b). The LE weight factor was E�

le � 2 kJ mol�1

and the four torsional angles C(1)–C(2)–C(3)–C(4), C(2)–C(3)–C(4)–C(5), C(3)–C(4)–C(5)–
O(5), and C(5)–O(5)–C(1)–C(2) were chosen as LE degrees of freedom.

1744 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



is trapped in a low-energy basin of the potential energy hypersur-
face, the LE algorithm gradually elevates the bottom of this basin
using additional Gaussian-shaped energy functions, which will
eventually force the molecular system out of the basin into a
neighboring basin of the energy hypersurface. In this way, the
energy surface is much more efficiently sampled than using stan-
dard MD. For low-dimensional systems LE-MD will lead to a flat
potential energy as soon as all parts of the LE configuration space
have been visited.135 If

Vphys�r�t�� � VLE�r�t�, t� (120)

is flat after a (long) time tl, by construction of the local-elevation
potential energy term, VLE(r, tl) represents the negative of the
free-energy surface or potential of mean force for the LE degrees
of freedom of the molecule.

LE-MD was already implemented in GROMOS96.3,4 Here, we
illustrate its sampling efficiency using as an example the confor-
mational sampling of a glucose molecule (Fig. 8) solvated in SPC
water.136 The time course of the six exocyclic torsional dihedral
angles of the sugar ring are shown for a standard MD and for
LE-MD simulation in Figure 9. In the standard MD at 300 K and
1 atm, no conformational transitions are observed on a 1-ns time
scale, while the LE-MD simulation with an energy weight factor

that is raised by 2 kJ mol�1 every time a configuration is revisited
already leads to a first conformational transition after 200 ps. After
500 ps many transitions are observed, indicating that the potential
energy surface eq. 120 is becoming flat, the free-energy surface
can then be obtained in the form of �VLE(r, t � 1000 ps).

Replica-Exchange Simulation of Butane

Five hundred butane molecules, all in trans-configuration, have
been simulated at 273 K. The force constant of the torsional angle
has been increased by a factor 3. The time to reach the equilibrium
state of gauche and trans butane can be determined by monitoring
the width of the torsional-angle distribution. The potential energy
barrier between the trans and the gauche configuration is too high
(	18 kJ/mol) to overcome at 273 K. REMD is applied to increase
the sampling of configurational space at 273 K. To this effect, 11
replicas of the system with changed torsional-angle force constants
(scaled by 1.0, 0.9, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5, 0.45, and 0.4,
respectively) were simulated simultaneously. Every 0.5 ps an
exchange between two neighboring replicas was attempted. Figure
10 shows the path in � space for all replicas. The overall exchange
probability during the simulation was 0.25. The time series of the
RMSD from the average of the torsional angle of all butane
molecules is depicted in Figure 11. The larger the RMSD, the more

Figure 10. REMD of liquid butane, starting from an all trans configuration of the torsional angle. The
path in � space for the 11 replicas (starting at � values 0.0, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55,
and 0.6) is shown. Exchanges were attempted every 0.5 ps, in total 250. The overall exchange probability
was 0.25. [Color figure can be viewed in the online issue, which is available at www.interscience.
wiley.com.]

GROMOS Software for Biomolecular Simulation 1745



torsional angle transitions from trans to gauche have happened.
Through replica exchange, also the simulation running at � � 0
contains butane molecules in a gauche conformation, unlike the
simulation carried out without replica exchange. Note that the
RMSD is dependent on the width of the valleys, so it is dependent
on the force constant. This, in turn, means that the equilibrium
value of the RMSD is different for the different replicas.

Coarse-Grained Simulation of Alkanes

Coarse-grained (CG) models allow for much more efficient sam-
pling of the molecular configurational space than atomic-level
(AL) models (at the expense of loss of atomic detail). Yet a CG
model should be able to reproduce the properties of an AL model,
assuming that the latter is correct. To illustrate this requirement for
CG models, some properties (conformational distributions and
configurational entropies) of n-alkanes in the liquid phase137 have
been compared. The main results are summarized here in the
context of hexadecane, where the AL model was the standard

GROMOS 45A3 force field129 and the CG model the one dis-
cussed before.116 For the AL model 128 hexadecane molecules
were simulated at 323 K and 1 atm in a periodic box over 25 ns.
For the CG model 512 molecules were simulated over 1000 ns
under the same conditions. In the AL model, a hexadecane mol-
ecule consists of a linear chain of 16 united atoms. In the CG
model, four united atoms are represented by one bead, so that
hexadecane consists of four beads. To compare AL configurations
of united atoms with CG configurations of beads, the AL trajec-
tories were mapped to the CG level by considering only the centers
of mass of the four united atoms that represent one bead at the CG
level. This mapping of the atomic level onto the coarse-grained
level is indicated by the symbol MAP.

Figure 12 shows the distribution of the values of the two
pseudobond angles and the one pseudotorsional angle of the hexa-
decane molecules at the CG level for the MAP (gray) and CG
(black) trajectories. The difference in torsional-angle distribution
can be explained from the absence of torsional potential energy
terms in the CG model.116 Table 10 shows the configurational

Figure 11. Simulation of liquid butane, starting from an all trans configuration of the torsional angle. The
time series of the root-mean-square deviation (RMSD) from the average torsional angle is shown. The
bold black line depicts the RMSD in the standard MD simulation. No broadening of the distribution is
visible. The bold red line denotes the RMSD of the replica at �i � 0.0 (corresponding to the standard MD
simulation). Clearly, the relaxation towards the equilibrium state is much faster using the replica-exchange
method than in the standard MD simulation. The other lines denote the other replicas (at 0.0 � �i � 1.0,
many of them reaching their equilibrium state already after about 50 ps. [Color figure can be viewed in
the online issue, which is available at www.interscience.wiley.com.]

1746 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



entropies of the four united atom fragments of the hexadecane
molecules at the atomic level (AL) and at the CG level (MAP),
together with those obtained from the CG simulations (CG). At the
CG level the configurational entropies of MAP and CG models
agree very well, to within 2 J mol�1 K�1.

These data illustrate that the CG model116 is able to reproduce
the properties of the GROMOS AL model rather well.

One-Step Perturbation Calculations on the Free Energy of
Ligand Binding to the Estrogen Receptor

The one-step approach to calculate relative free energies of com-
plexation or ligand binding is particularly efficient when many
structurally not too different ligands are to be considered. Previ-
ously,124 the Gibbs free energy of binding of 17 polychlorinated
biphenyls to the estrogen receptor were calculated from two MD
simulations of an unphysical reference compound, one when
bound to the protein and one free in solution. Here, the efficiency
of the one-step technique is illustrated by calculating more than
1500 binding free energies from the two simulations.

Figure 13 shows the biphenyl ligand with the nine atoms that
are made soft atoms in the unphysical reference state. At these nine
soft sites, five different real substituents (H, F, Cl, Br, and CH3)
can be placed, yielding 59 � 1 � 1,953,124 relative binding
energies for the ligands. Here, we calculated free energies for all
possible polyfluorinated, polychlorinated, and polybrominated li-
gands (in total 3 � 29 � 1 � 1535 relative free energies) from one
simulation of the free ligand in water and one bound to the
estrogen receptor. For every class of substituted biphenyl ligands,
the three best binding structures are depicted in Figure 13. (We
note that the binding affinity of the polybrominated biphenyls
might be underestimated by the choice of the reference state: the
soft-core atoms chosen have smaller van der Waals radii than the
Bromine atoms.) This application illustrates the efficiency of the
one-step perturbation technique for screening purposes in drug
design.

Other Applications

GROMOS can be used for molecular modelling of any type of
molecular system. Below, a number of applications are mentioned,
which, for convenience, have mainly been taken from our own
more recent work.

The structural stability of proteins,138–144 peptides,145–152 sug-
ars,126,153 and DNA154,155 as function of their composition, chain
lengths, and solvent environment or temperature and pressure can
be studied. Solvation, both in pure solvents and in mixtures, can be
investigated in atomic detail.156–159 Motional properties, NMR
coupling constants, and dielectric relaxation times can be ana-
lyzed.139,160–162 3J-coupling constants, NOE’s and NMR order
parameters and CD spectra can be compared to experimental
values.163–167 GROMOS can also be used for structure refinement

Table 10. Configurational Entropy (in J K�1 mol�1) of the Four (A–D)
Hexadecane Fragments That Correspond to the Four Beads of the
Coarse-Grained (CG) Model for Hexadecane in the Liquid Phase.

Fragment AL MAP CG

A 211 133 131
B 209 111 110
C 209 111 110
D 211 133 131

AL: atomic-level entropies; MAP: fragment entropies from the AL trajec-
tories; CG: bead entropies from the CG trajectories.

Figure 12. Bond-angle (A–B–C, B–C–D) and torsional dihedral angle
(A–B–C–D) distributions at the coarse-grained level. Gray: A–D are
centers of mass of fragments consisting of four united atoms as
obtained from AL trajectories. Black: A–D are beads of the CG model
obtained from CG simulations.

GROMOS Software for Biomolecular Simulation 1747



of biomolecules based on NMR data.168–170 Molecular host–guest
complexes can be studied in terms of structural properties and free
energy and entropy of binding.123,124,127,171–173 Polypeptide
(un)folding equilibria can be simulated in atomic detail.174–179

Biochemical reactions can be mimicked in QM/MM simulations,
in which interfaces to quantum chemistry software have to be
used.180–182

A variety of types of molecules have been simulated: proteins,
DNA, RNA, saccharides, lipids, and a range of solvents: water,
DMSO, methanol, chloroform, carbontetrachloride, acetonitrile,
and mixtures of these and other cosolvents such as urea.183–186

Also, membranes and micelles have been simulated using GRO-
MOS.187–192

Conclusions

The GROMOS software for biomolecular simulation has been
extended with new functionality and extended analysis possibili-
ties and put partially into C��, which makes extension of func-
tionalities easier. GROMOS05 comes with the latest thermody-

namically calibrated GROMOS force field parameter sets 45A3/4
and 53A5/6, which are suitable for a broad range of molecular
systems. The source code of GROMOS is obtainable for a nominal
fee (http://www.igc.ethz.eh/gromos), and should allow both meth-
odological investigations and structural, dynamical, and energetic
explorations of biomolecular systems, which may lead to an en-
hanced understanding of the properties of such systems.

References

1. van Gunsteren, W. F.; Berendsen, H. J. C. Groningen Molecular
Simulation (GROMOS) Library Manual, Biomos b.v.; University of
Groningen, Groningen: The Netherlands, 1987.

2. Scott, W. R. P.; van Gunsteren, W. F. In Methods and Techniques in
Computational Chemistry: METECC-95; Clementi, E.; Corongiu, G.,
Eds.; STEF: Cagliari, Italy, 1995, p. 397.

3. van Gunsteren, W. F.; Billeter, S. R.; Eising, A. A.; Hünenberger,
P. H.; Krüger, P.; Mark, A. E.; Scott, W. R. P.; Tironi, I. G.
Biomolecular Simulation: The GROMOS96 Manual and User Guide;
Vdf Hochschulverlag AG an der ETH Zürich: Zürich, Switzerland.

4. Scott, W. R. P.; Hünenberger, P. H.; Tironi, I. G.; Mark, A. E.;

Figure 13. Polysubstituted byphenyls. Soft-core sites in the reference state are indicated as spheres. Of
the 3 � 29 real ligands for which the relative free energy of binding to the estrogen receptor were calculated,
the ones with lowest free energy of binding (in kJ mol�1) are shown. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

1748 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



Billeter, S. R.; Fennen, J.; Torda, A. E.; Huber, T.; Krüger, P.; van
Gunsteren, W. F. J Phys Chem A 1999, 103, 3596.

5. van Gunsteren, W. F.; Bakowies, D.; Bürgi, R.; Chandrasekhar, I.;
Christen, M.; Daura, X.; Gee, P.; Glättli, A.; Hansson, T.; Oosten-
brink, C.; Peter, C.; Pitera, J.; Schuler, L.; Soares, T.; Yu, H. Chimia
2001, 55, 856.

6. Bekker, H. J Comput Chem 1997, 18, 1930.
7. Hünenberger, P. H. Adv Polym Sci 2005, 173, 105.
8. Harvey, S. C.; Tan, R. K.-Z.; Cheatham, T. E., III. J Comput Chem

1998, 19, 726.
9. Chen, T.; Fowler, A.; Toner, M. Cryobiology 2000, 40, 277.

10. Amadei, A.; Chillemi, G.; Ceruso, M. A.; Grottesi, A.; Di Nola, A.
J Chem Phys 2000, 112, 9.

11. Rugh, H. H. Phys Rev Lett 1997, 78, 772.
12. Butler, B. D.; Ayton, G.; Jepps, O. G.; Evans, D. J. J Chem Phys

1998, 109, 6519.
13. Hünenberger, P. H. J Chem Phys 2002, 116, 6880.
14. Oliva, B.; Hünenberger, P. H. J Chem Phys 2002, 116, 6898.
15. Graben, H. W.; Ray, J. R. Phys Rev A 1991, 43, 4100.
16. Bekker, H.; Ahlström, P. Mol Simulat 1994, 13, 367.
17. Bekker, H.; Berendsen, H. J. C.; van Gunsteren, W. F. J Comput

Chem 1995, 16, 527.
18. Paci, E.; Marchi, M. J Phys Chem 1996, 100, 4314.
19. Woodcock, L. V. Chem Phys Lett 1971, 10, 257.
20. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola,

A.; Haak, J. R. J Chem Phys 1984, 81, 3684.
21. Nosé, S. J Chem Phys 1984, 81, 511.
22. Hoover, W. G. Phys Rev A 1985, 31, 1695.
23. Martyna, G. J.; Klein, M. L.; Tuckerman, M. J Chem Phys 1992, 97,

2635.
24. Hockney, R. W. Methods Comput Phys 1970, 9, 136.
25. Hoover, W. G.; Ladd, A. J. C.; Moran, B. Phys Rev Lett 1982, 48,

1818.
26. Evans, D. J. J Chem Phys 1983, 78, 3297.
27. Morishita, T. J Chem Phys 2000, 113, 2976.
28. Nosé, S. Mol Phys 1984, 52, 255.
29. Posch, H. A.; Hoover, W. G.; Vesely, F. J. Phys Rev A 1986, 33,

4253.
30. Jellinek, J.; Berry, S. R. Phys Rev A 1989, 40, 2816.
31. Hamilton, I. P. Phys Rev A 1990, 42, 7467.
32. Toxvaerd, S. Ber Bunsenges Phys Chem 1990, 94, 274.
33. Calvo, F.; Galindez, J.; Gadéa, F. X. J Phys Chem A 2002, 106, 4145.
34. D’Alessandro, M.; Tenenbaum, A.; Amadei, A. J Phys Chem B 2002,

106, 5050.
35. Anderson, H. C. J Chem Phys 1980, 72, 2384.
36. Parrinello, M.; Rahman, A. Phys Rev Lett 1980, 45, 1196.
37. Parrinello, M.; Rahman, A. J Phys Chem 1982, 76, 2662.
38. Ryckaert, J. P.; Ciccotti, G. J Chem Phys 1983, 78, 7368.
39. Nosé, S.; Klein, M. L. Mol Phys 1983, 50, 1055.
40. Heyes, D. M. Chem Phys 1983, 82, 285.
41. Finney, J. L. J Comput Chem 1978, 28, 92.
42. Streett, W. B.; Tildesley, D. J.; Saville, G. Mol Phys 1978, 35, 639.
43. van Gunsteren, W. F.; Berendsen, J. J. C. Angew Chem Int Ed Engl

1990, 29, 992.
44. Chialvo, A. A.; Debenedetti, P. G. Comput Phys Commun 1992, 70,

467.
45. Heinz, T.; Hünenberger, P. H. J Comput Chem 2004, 25, 1474.
46. Bekker, H.; Berendsen, H. J. C.; Dijkstra, E. J.; Achterop, S.; Drunen,

R. v.; Spoel, D. v. d.; Sijbers, A.; Keegstra, H.; Reitsma, B.; Renar-
dus, M. K. R. In Conf Proc Physics Computing ’92, 257, World
Scientific Publishing Co: Singapore.

47. Bekker, H. Thesis Rijksuniversiteit Groningen, 1996.
48. Barker, J. A.; Watts, R. O. Mol Phys 1973, 26, 789.

49. Barker, J. A. Mol Phys 1994, 83, 1057.
50. Tironi, I. G.; Sperb, R.; Smith, P. E.; van Gunsteren, W. F. J Chem

Phys 1995, 102, 5451.
51. Hünenberger, P. H.; van Gunsteren, W. F. J Chem Phys 1998, 108,

6117.
52. Bergdorf, M.; Peter, C.; Hünenberger, P. H. J Chem Phys 2003, 119,

9129.
53. Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Comput Phys

Commun 1995, 91, 43.
54. Onsager, L. J Am Chem Soc 1936, 58, 1486.
55. Hünenberger, P. H.; McCammon, J. A. J Chem Phys 1999, 110,

1856.
56. Hünenberger, P. H. In Simulation and Theory of Electrostatic Inter-

actions in Solution: Computational Chemistry, Biophysics and Aque-
ous Solution; Pratt, L. R.; Hummer, G., Eds.; AIP: New York, 1999,
p. 17.

57. Weber, W.; Hünenberger, P. H.; McCammon, J. A. J Phys Chem B
2000, 104, 3668.

58. Kastenholz, M. A.; Hünenberger, P. H. J Phys Chem B 2004, 108,
774.

59. Hünenberger, P. H. J Chem Phys 2000, 113, 10464.
60. Heinz, T. N.; Hünenberger, P. H. J Chem Phys, submitted.
61. Redlack, A.; Grindlay, J. Can J Phys 1972, 50, 2815.
62. Euwema, R. N.; Surratt, G. T. J Phys Chem Solids 1975, 36, 67.
63. Redlack, A.; Grindlay, J. J Phys Chem Solids 1975, 36, 73.
64. Stuart, S. N. J Comput Phys 1978, 29, 127.
65. de Leeuw, S. W.; Perram, J. W.; Smith, E. R. Proc R Soc Lond A

1980, 373, 27.
66. de Leeuw, S. W.; Perram, J. W.; Smith, E. R. Proc R Soc Lond A

1980, 373, 57.
67. de Leeuw, S. W.; Perram, J. W. Physica A 1981, 107, 179.
68. Steinhauser, O. Chem Phys 1983, 79, 465.
69. de Leeuw, S. W.; Perram, J. W.; Smith, E. R. Proc R Soc Lond A

1983, 388, 177.
70. Allen, M. P.; Tildesley, D. J. Computer Simulations of Liquids;

Oxford Science: Oxford, 1987.
71. Kusalik, P. G. J Chem Phys 1990, 93, 3520.
72. Caillol, J.-M. J Chem Phys 1994, 101, 6080.
73. Roberts, J. E.; Schnitker, J. J Chem Phys 1994, 101, 5024.
74. Roberts, J. E.; Schnitker, J. J Phys Chem 1995, 99, 1322.
75. Boresch, S.; Steinhauser, O. Ber Bunsenges Phys Chem 1997, 101,

1019.
76. Challacombe, M.; White, C.; Head–Gordon, M. J Chem Phys 1997,

107, 10131.
77. Boresch, S.; Steinhauser, O. J Chem Phys 1999, 111, 8271.
78. Boresch, S.; Ringhofer, S.; Höchtl, P.; Steinhauser, O. Biophys Chem

1999, 78, 43.
79. Vorobjev, Y. N.; Hermans, J. J Phys Chem 1999, 103, 10234.
80. Hünenberger, P. H. In Simulation and Theory of Electrostatic Inter-

actions in Solution: Computational Chemistry, Biophysics, and
Aqueous Solution; Hummer, G.; Pratt, L. R., Eds.; American Institute
of Physics: New York, p. 17.

81. Peter, C.; van Gunsteren, W. F.; Hünenberger, P. H. J Chem Phys
2002, 116, 7434.

82. Kastenholz, M. A.; Hünenberger, P. H. J Chem Phys, submitted.
83. Ewald, P. P. Ann Phys 1921, 64, 253.
84. Hockney, R. W.; Eastwood, J. W. Computer Simulation Using Par-

ticles; Institute of Physics Publishing: Bristol, 1988, 2nd ed.
85. Wigner, E. Trans Faraday Soc 1938, 34, 678.
86. Felderhof, B. U. Physica A 1985, 130, 34.
87. Nijboer, B. R. A.; Ruijgrok, T. W. J Stat Phys 1988, 53, 361.
88. Deserno, M.; Holm, C. J Chem Phys 1988, 109, 7694.
89. Deserno, M.; Holm, C. J Chem Phys 1988, 109, 7678.

GROMOS Software for Biomolecular Simulation 1749



90. Hukushima, K.; Nemoto, K. J Phys Soc Jpn 1996, 65, 1604.
91. Hukushima, K.; Takayama, H.; Nemoto, K. Int J Mod Phys C 1996,

7, 337.
92. Swendsen, R. H.; Wang, J.-S. Phys Rev Lett 1986, 57, 2607.
93. Geyer, C. J. In Computing Science and Statistics, Proceedings 23rd

Symp on the Interface; Keramidas, E. M., Eds.; Interface Foundation:
Fairfax Station, 1991, p. 156.

94. Tesi, M. C.; van Rensburg, E. J. J.; Orlandini, E.; Whittington, S. G.
J Stat Phys 1996, 82, 155.

95. Marinari, E.; Parisi, G.; Ruiz–Lorenzo, J. J. In Spin Glasses and
Random Fields; Young, A. P., Eds.; World Scientific: Singapore,
1988, p. 59.

96. Irbäck, A.; Potthast, F. J Chem Phys 1995, 103, 10298.
97. Hansmann, U. H. E.; Okamoto, Y. Phys Rev E 1996, 54, 5863.
98. Irbäck, A.; Peterson, C.; Potthast, F.; Sommelius, O. J Chem Phys

1997, 107, 273.
99. Hansmann, U. H. E.; Okamoto, Y. J Comput Chem 1997, 18, 920.

100. Okabe, T.; Kawata, M.; Okamoto, Y.; Mikami, M. Chem Phys Lett
2001, 335, 435.

101. Zhou, R.; Berne, B. J.; Germain, R. Proc Natl Acad Sci USA 2001,
98, 14931.

102. Garcia, A. E.; Sambonmatsu, K. Y. Proteins Struct Funct Genet 2001,
42, 345.

103. Sanbonmatsu, K. Y.; Garcia, A. E. Proteins Struct Funct Genet 2002,
46, 225.

104. Pitera, J. W.; Swope W. Proc Natl Acad Sci USA 2003, 100, 7587.
105. Yang, W. Y.; Pitera, J. W.; Swope, W. C.; Gruebele, M. J Mol Biol

2004, 336, 241.
106. Swope, W. C.; Pitera, J. W.; Suits, F. J Phys Chem B 2004, 108,

6571.
107. Swope, W. C.; Pitera, J. W.; Suits, F.; Pitman, M.; Eleftheriou, M.;

Fitch, B. G.; Germain, R. S.; Rayshubski, A.; Ward, T. J. C.;
Zhestkov, Y.; Zhou, R. J Phys Chem B 2004, 108, 6582.

108. Sugita, Y.; Kitao, A.; Okamoto, Y. J Chem Phys 2000, 113, 6042.
109. Fukunishi, H.; Watanabe, O.; Takada, S. J Chem Phys 2002, 116,

9058.
110. Affentranger, R.; Tavernelli, I.; Di Iorio, E. E. Biophys J, submitted.
111. Smit, B.; Hilbers, P. A. J.; Esselink, K.; Rupert, L. A. M.; van Os,

N. M.; Schlijper, A. G. Nature 1990, 348, 624.
112. Baschnagel, J.; Binder, K.; Doruker, P.; Gusev, A. A.; Hahn, O.;

Kremer, K.; Mattice, W. L.; Müller–Plathe, F.; Murat, M.; Paul, W.;
Santos, S.; Suter, U. W.; Tries, V. Adv Polym Sci 2000, 152, 41.

113. Shelley, J. C.; Shelley, M. Y. Curr Opin Colloid Interface Sci 2000,
5, 101.

114. Müller, M.; Katsov, K.; Schick, M. J Polym Sci Part B: Polym Phys
2003, 41, 1441.

115. Tozzini, V. Curr Opin Struct Biol 2005, 15, 144.
116. Marrink, S. J.; de Vries, A. H.; Mark, A. E. J Phys Chem B 2004,

108, 750.
117. Oostenbrink, C.; Villa, A.; Mark, A. E.; van Gunsteren, W. F. J Comp

Chem 2004, 25, 1656.
118. van der Spoel, D.; van Buuren, A. R.; Apol, E.; Meulenhoff, P. J.;

Tielemann, D. P.; Sijbers, A. L. T. M.; Hess, B.; Feenstra, K. A.; van
Drunen, R.; Berendsen, H. J. C. Gromacs User Manual; The Neth-
erlands; http://www.gromacs.org.

119. Beutler, T. C.; Mark, A. E.; van Schaik, R. C.; Gerber, P. R.; van
Gunsteren, W. F. Chem Phys Lett 1994, 222, 529.

120. Liu, H.; Mark, A. E.; van Gunsteren, W. F. J Phys Chem 1996, 100,
9485.

121. Schäfer, H.; van Gunsteren, W. F.; Mark, A. E. J Comput Chem
1999, 20, 1604.

122. Pitera, J. W.; van Gunsteren, W. F. J Phys Chem B 2001, 105, 11264.

123. Oostenbrink, C.; van Gunsteren, W. F. J Comput Chem 2003, 24,
1730.

124. Oostenbrink, C.; van Gunsteren, W. F. Proteins 2004, 54, 234.
125. Oostenbrink, C.; van Gunsteren, W. F. Chem Eur J, 2005, 11, 4340.
126. Yu, H.; Amann, M.; Hansson, T.; Köhler, J.; Wich, G.; van Gun-

steren, W. F. Carbohydr Res 2004, 339, 1697.
127. Oostenbrink, C.; van Gunsteren, W. F. Proc Natl Acad Sci USA

2005, 102, 6750.
128. Daura, X.; Mark, A. E.; van Gunsteren, W. F. J Comput Chem 1998,

19, 535.
129. Schuler, L. D.; Daura, X.; van Gunsteren, W. F. J Comput Chem

2001, 22, 1205.
130. Yu, H.; van Gunsteren, W. F. Comput Phys Commun, in press.
131. Straatsma, T. P.; McCammon, J. A. Mol Simulat 1990, 5, 181.
132. Yu, H.; Hansson, T.; van Gunsteren, W. F. J Chem Phys 2003, 118,

221.
133. Yu, H.; van Gunsteren, W. F. J Chem Phys 2004, 121, 9549.
134. Programming languages—C��, ISO 14882; 2003.
135. Huber, T.; Torda, A. E.; van Gunsteren, W. F. J Comput Aided Mol

Design 1994, 8, 695.
136. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Her-

mans, J. In Intermolecular Forces; Pullman, B., Ed.; Reidel: Dordre-
cht, 1981, p. 331.

137. Baron, R.; de Vries, A. H.; Hünenberger, P. H.; van Gunsteren, W. F.
J Phys Chem B, to be submitted.

138. Voordijk, S.; Hansson, T.; Hilvert, D.; van Gunsteren, W. F. J Mol
Biol 2000, 300, 963.

139. Pitera, J. W.; Falta, M.; van Gunsteren, W. F. Biophys J 2001, 80,
2546.

140. Schäfer, H.; Smith, L. J.; Mark, A. E.; van Gunsteren, W. F. Proteins
2002, 46, 215.

141. Bakowies, D.; van Gunsteren, W. F. J Mol Biol 2003, 315, 713.
142. Antes, I.; Thiel, W.; van Gunsteren, W. F. Eur Biophys J 2002, 31,

504.
143. Smith, L. J.; Jones, R. M.; van Gunsteren, W. F. Proteins 2005, 58,

439.
144. van den Bosch, M.; Swart, M.; Snijders, J. G.; Berensen, H. J. C.;

Mark, A. E.; Oostenbrink, C.; van Gunsteren, W. F.; Canters, G. W.
ChemBioChem 2005, 6, 738.

145. Bonvin, A. M. J. J.; van Gunsteren, W. F. J Mol Biol 2000, 296, 255.
146. Peter, C.; Daura, X.; van Gunsteren, W. F. J Am Chem Soc 2000,

122, 7461.
147. Daura, X.; Gademann, K.; Schäfer, H.; Juan, B.; Seebach, D.; van

Gunsteren, W. F. J Am Chem Soc 2001, 123, 2393.
148. Gee, P. J.; Hamprecht, F. A.; Schuler, L. D.; van Gunsteren, W. F.;

Duchardt, E.; Schwalbe, H.; Albert, M.; Seebach, D. Helv Chim Acta
2002, 85, 618.

149. Yu, H.; Daura, X.; van Gunsteren, W. F. Proteins 2004, 54, 116.
150. Soares, T.; Christen, M.; Hu, K.; van Gunsteren, W. F. Tetrahedron

2004, 60, 7775.
151. Santiveri, C. M.; Jimènez, M. A.; Rico, M.; van Gunsteren, W. F.;

Daura, X. J Peptide Sci 2004, 10, 546.
152. Glättli, A.; Seebach, D.; van Gunsteren, W. F. Helv Chem Acta 2004,

87, 2487.
153. Kony, D.; Damm, W.; Stoll, S.; Hünenberger, P. H. J Phys Chem B

2004, 108, 5815.
154. Czechtizky, W.; Daura, X.; Vasella, A.; van Gunsteren, W. F. Helv

Chim Acta 2001, 84, 2132.
155. Soares, T. A.; Hünenberger, P. H.; Kastenholz, M. A.; Kräutler, V.;

Lenz, T.; Lins, R. D.; Oostenbrink, C.; van Gunsteren, W. F. J Comp
Chem 2005, 26, 725.

156. van der Vegt, N. F. A.; van Gunsteren, W. F. J Phys Chem B 2004,
108, 1056.

1750 Christen et al. • Vol. 26, No. 16 • Journal of Computational Chemistry



157. Trzesniak, D.; van der Vegt, N. F. A.; van Gunsteren, W. F. Phys
Chem Chem Phys 2004, 6, 697.

158. van der Vegt, N. F. A.; Trzesniak, D.; Kasumaj, B.; van Gunsteren,
W. F. Chem Phys Chem 2004, 5, 144.

159. Oostenbrink, C.; van Gunsteren, W. F. Pys Chem Chem Phys 2005,
7, 53.

160. Daura, X.; Haaksma, E.; van Gunsteren, W. F. J Comput Aided Mol
Design 2000, 14, 507.

161. Walser, R.; van Gunsteren, W. F. Proteins 2001, 42, 414.
162. Peter, C.; Daura, X.; van Gunsteren, W. F. J Biomol NMR 2001, 20,

297.
163. Stocker, U.; van Gunsteren, W. F. Proteins 2000, 40, 145.
164. Glättli, A.; Daura, X.; Seebach, D.; van Gunsteren, W. F. J Am Chem

Soc 2002, 124, 12972.
165. Daura, X.; Bakowies, D.; Seebach, D.; Fleischhauer, J.; van Gun-

steren, W. F.; Krüger, P. Eur Biophys J 2003, 32, 661.
166. Soares, T. A.; Daura, X.; Oostenbrink, C.; Smith, L. J.; van Gun-

steren, W. F. J Biomol NMR 2004, 30, 407.
167. Oostenbrink, C.; Soares, T. A.; van der Vegt, N. F. A.; van Gun-

steren, W. F. Eur Biophys J 2005, 34, 273.
168. Stocker, U.; Juchli, D.; van Gunsteren, W. F. Mol Simulat 2003, 29, 123.
169. Peter, C.; Rüping, M.; Wörner, H. J.; Jaun, B.; Seebach, D.; van

Gunsteren, W. F. Chem Eur J 2003, 9, 5838.
170. Glättli, A.; van Gunsteren, W. F. Angew Chem Int Ed Engl 2004, 43,

6312; Angew Chem 2004, 116, 6472.
171. Oostenbrink, B. C.; Pitera, J. W.; van Lipzig, M. M. H.; Meerman,

J. H. N.; van Gunsteren, W. F. J Med Chem 2000, 43, 4594.
172. Dolenc, J.; Oostenbrink, C.; Koller, J.; van Gunsteren, W. F. Nucleic

Acids Res 2005, 33, 725.
173. Hsu, S.-T. D.; Peter, C.; van Gunsteren, W. F.; Bonvin, A. M. J. J.

Biophys J 2005, 88, 15.
174. van Gunsteren, W. F.; Bürgi, R.; Peter, C.; Daura, X. Angew Chemie

Int Ed 2001, 40, 351.
175. Schäfer, H.; Daura, X.; Mark, A. E.; van Gunsteren, W. F. Proteins

2001, 43, 45.

176. Daura, X.; Glättli, A.; Gee, P.; Peter, C.; van Gunsteren, W. F. Adv
Protein Chem 2002, 62, 341.

177. Baron, R.; Bakowies, D.; van Gunsteren, W. F.; Daura, X. Helv Chim
Acta 2002, 85, 3872.

178. Baron, R.; Bakowies, D.; van Gunsteren, W. F. Angew Chem Int Ed
Engl 2004, 43, 4055; Angew Chem 2004, 116, 4147.

179. Baron, R.; Bakowies, D.; van Gunsteren, W. F. J Peptide Sci 2005,
11, 74.

180. Billeter, S. R.; van Gunsteren, W. F. J Phys Chem A 2000, 104, 3276.
181. Berweger, C. D.; Thiel, W.; van Gunsteren, W. F. Proteins 2000, 41,

299.
182. Billeter, S. R.; Hanser, C. F. W.; Mordasini, T. Z.; Scholten, M.;

Thiel, W.; van Gunsteren, W. F. Phys Chem Chem Phys 2001, 3, 688.
183. Glättli, A.; Daura, X.; van Gunsteren, W. F. J Chem Phys 2002, 116,

9811.
184. Glättli, A.; Daura, X.; van Gunsteren, W. F. J Comput Chem 2003,

24, 1087.
185. Smith, L. J.; Berendsen, H. J. C.; van Gunsteren, W. F. J Phys Chem

A 2004, 108, 1065.
186. Geerke, D. P.; Oostenbrink, C.; van der Vegt, N. F. A.; van Gun-

steren, W. F. J Phys Chem B 2004, 108, 1436.
187. Schuler, L. D.; Walde, P.; Luisi, P. L.; van Gunsteren, W. F. Eur

Biophys J 2001, 30, 330.
188. Chandrasekhar, I.; van Gunsteren, W. F. Curr Sci 2001, 81, 1325.
189. Chandrasekhar, I.; Kastenholz, M.; Iins, R. D.; Oostenbrink, C.;

Schuler, L. D.; Tieleman, D. P.; van Gunsteren, W. F. Eur Biophys J
2003, 32, 67.

190. Pereira, C. S.; Lins, R. D.; Chandrasekhar, I.; Freitas, L. C. G.;
Hünenberger, P. H. Biophysical Journal 2004, 86, 2273.

191. Chandrasekhar, I.; Oostenbrink, C.; van Gunsteren, W. F. Soft Mater
2004, 2, 27.

192. de Vries, A. H.; Chandrasekhar, I.; van Gunsteren, W. F.; Hünen-
berger, P. H. J Phys Chem 2005, 109, 11643.

GROMOS Software for Biomolecular Simulation 1751


