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1. Introduction

The role of computation in biology, biological chemistry,
and biophysics has shown a steady increase over the past few
decades. The continuing growth of computing power (in
particular in the context of personal computers) has made it
possible to analyze, compare, and characterize large and
complex data sets that are obtained from experiments on
biomolecular systems. This has in turn led to the formulation
of models for biomolecular processes that are amenable to
simulation or analysis on a computer. When undertaking a
biomolecular modeling study of a particular system of
interest, the level of modeling, that is, the spatial resolution,
time scale, and degrees of freedom of interest, must be
considered (Table 1).

Which level of modeling is chosen to describe a particular
biomolecular process depends on the type of process. In this
Review we focus on three of the four biomolecular processes
illustrated in Figure 1: 1) polypeptide folding, 2) molecular
complexation (e.g. protein–ligand, DNA–ligand, protein–
DNA, etc.), 3) partitioning of molecules between different
environments, such as lipid membranes, water, mixtures (e.g.
water/urea, ionic solutions), and apolar solvents, and 4) the
formation of lipid membranes or micelles out of mixtures of
their components. These four processes play a fundamental
role in the behavior of biomolecular systems and share the
common feature that they are driven by weak, nonbonded
interatomic interactions. Such interactions govern the ther-
modynamic properties of the condensed phase in which the
four processes occur. Therefore, these processes are most
promisingly modeled at the atomic or molecular level (third
row in Table 1). Since the temperature range of interest
basically lies between room and physiological temperatures,
and energies involved in these processes are on the order of 1–
10 kBT (which corresponds to tens of kJmol�1, kB is the
Boltzmann constant), the processes are largely determined by
the laws of classical statistical mechanics. Although quantum
mechanics governs the interactions between the electrons of
the atoms and molecules as well as the motions of light
particles such as protons, the nonbonded interactions can be

very well described by a classical potential-energy function or
force field as part of a classical Hamiltonian of the system of
interest.[1]

Figure 2 shows the four choices to be made when
modeling a biomolecular system: 1) which atomic or molec-
ular degrees of freedom are explicitly considered in the
model, 2) which interaction function or force field is used to
describe the energy of the system as a function of the chosen
degrees of freedom, 3) how these, generally many, degrees of
freedom are to be sampled, and 4) how the spatial boundaries
and external forces are modeled. As already mentioned, we
mainly consider atomic and molecular degrees of freedom
with the corresponding classical force fields and classical
Newtonian dynamics to sample the degrees of freedom.
System sizes that can be considered range up to 105 or
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Computation based on molecular models is playing an increasingly
important role in biology, biological chemistry, and biophysics. Since
only a very limited number of properties of biomolecular systems is
actually accessible to measurement by experimental means, computer
simulation can complement experiment by providing not only aver-
ages, but also distributions and time series of any definable quantity,
for example, conformational distributions or interactions between
parts of systems. Present day biomolecular modeling is limited in its
application by four main problems: 1) the force-field problem, 2) the
search (sampling) problem, 3) the ensemble (sampling) problem, and
4) the experimental problem. These four problems are discussed and
illustrated by practical examples. Perspectives are also outlined for
pushing forward the limitations of biomolecular modeling.
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106 atoms or particles, which is still very small compared to
Avogadro7s number, that is, macroscopic sizes. For such small
systems, the modeling of the boundary or surface will have a
large effect on the calculated properties. Such surface effects

can be minimized by using periodic boun-
dary conditions, where the box that contains
the molecular system is surrounded by an
infinite number of copies of itself (Figure 3).
This avoids surface effects at the expense of
introducing periodicity artefacts.[2–5]

Present day biomolecular modeling is
limited in its application by the four prob-
lems highlighted in Table 2: 1) the force-
field problem, 2) the search (sampling)
problem, 3) the ensemble (sampling) prob-
lem, and 4) the experimental problem.
These four problems are the focus of the
present Review and will be discussed and
illustrated in Sections 2–5 by using exam-
ples from our own work. We stress that the
aim of this Review is not to review the
contributions of various research groups to
the field.

The key reason why computer simula-
tion is used in the study of biomolecular
systems in spite of the above-mentioned
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Table 1: Examples of levels of modeling in computational biochemistry and molecular biology.

Methods Degrees of freedom Properties, processes Time scale

quantum dynamics atoms, nuclei, electrons excited states, relaxation,
reaction dynamics

picoseconds

quantum mechanics
(ab initio, density functional,
semiempirical, valence bond
methods)

atoms, nuclei, electrons ground and excited states,
reaction mechanisms

no time scale

classical statistical mechanics
(MD, MC, force fields)

atoms, solvent ensembles, averages,
system properties, folding

nanoseconds

statistical methods (database
analysis)

groups of atoms, amino
acid residues, bases

structural homology and
similarity

no time scale

continuum methods (hydro-
dynamics and electrostatics)

electrical continuum,
velocity continuum etc.

rheological properties supramolecular

kinetic equations populations of species population dynamics,
signal transduction

macroscopic

Folding Membrane or Micelle Formation

Complexation Partitioning

folded/native denatured micelle mixture

bound unbound in membrane in water in mixtures

Figure 1. Four biomolecular processes that are governed by thermody-
namic equilibria.

Boundary conditions

MOLECULAR
MODEL

Degrees of freedom: 
atoms are the 
elementary particles

Forces or 
interactions
between atoms

Methods to generate 
configurations of

atoms: Newton

system
temperature

pressure
walls

external forces

Force field =
physicochemical

knowledge

Figure 2. Four basic choices in the definition of a model for molecular
simulation.

Vacuum

Droplets

Periodic: system is surrounded by copies of itself

• Surface effects 

• No dielectric screening

• Still surface effects

• Only partial dielectric screening

• Evaporation of the solvent

Advantage:
• No surface effects

Disadvantage:

• Artificial periodicity

• High effective concentration

(surface tension)

(at water – vacuum interface)

Figure 3. Three types of spatial boundary conditions used in molecular
simulation.
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limitations to its accuracy resides in the fourth of the four
reasons listed in Table 3: Only a very limited number of
properties of a biomolecular system is actually accessible to
experimental measurement, whereas in a computer simula-

tion not only averages, but also distributions and time series of
any definable quantity can be determined. Thus, computer
simulation represents a complement to experiment by
providing the detailed conformational and other distributions
that determine the space and time averages obtained
experimentally. As such, it is an indispensable tool to
interpret experimental data. Moreover, it can be used to
predict properties under environmental conditions that are
difficult or expensive to realize. In the next four sections we
illustrate the use, power, and limitations of biomolecular
modeling in conjunction with experimental efforts with
regard to the four processes of interest (Figure 1).

2. The Force-Field Problem

A biomolecular force field generally consists of potential-
energy terms representing covalent interactions between
atoms (such as bond-stretching, bond-angle bending,
improper and proper dihedral-angle torsion) on the one

hand and nonbonded interactions on the other hand between
atoms in different molecules and between atoms in a
molecule that are separated by more than two or three
covalent bonds.[6,7]

Since nonbonded interactions govern the thermodynamic
equilibria and processes of interest depicted in Figure 1, we
focus on the formulation and parametrization of these
potential-energy terms. Three problems dominate the topic
of force-field development (Table 2, point 1, A–C).

A first problem is that the (free) energy differences
driving the processes of Figure 1 are of the order of 1–10 kBT
(which corresponds to tens of kJmol�1). These relatively small
energies result from a summation over very many (106–108)
atom pairs: A system of N= 1000 atoms has about 1=2N
(N�1)= 500000 pairs of atoms contributing to the non-
bonded interaction. To reach the requested accuracy for the
total nonbonded energy, the accuracy of the individual terms
in the summation (the atom-pair energies) must be higher.
This difficulty becomes increasingly severe when trying to
derive a force field of high accuracy for larger systems, that is,
for larger values of N.

A second problem is to appropriately account for entropic
effects. Since we are not interested in biomolecular systems at
a temperature of �273.15 8C (0 K), we have to consider the
contribution of entropy S to the free energy F=U�TS of the
system of interest. It is well known that entropy plays an
essential role in all four of the processes shown in Figure 1.
Changes in free energy that drive processes may result from
changes in internal energy (U) or in entropy (S), which may
work together or against each other depending on the relative
strengths of the nonbonded interactions between the various
components (atoms, molecules) of the system.[8,9] Figure 4
illustrates the phenomenon of energy–entropy compensation:
two conformations x1 and x2 of a molecule may have U(x1)!
U(x2), while F(x1)>F(x2) if at a given temperature S(x1)!
S(x2). The entropy is a measure of the extent of conforma-
tional space (x) accessible to the molecular system at a given
temperature T.

Figure 4 also illustrates that searching for and finding the
global energy minimum of a biomolecular system is mean-
ingless when its entropy accounts for a sizeable fraction of its
free energy. For example, F=�24 kJmol�1, U=

�41 kJmol�1, and TS=�17 kJmol�1 for liquid water at
room temperature and pressure. The properties of water in

Table 2: Four basic problems of biomolecular modeling.

1. force-field
problem

A) very small (free) energy differences, many
interactions
B) entropic effects
C) variety of atoms and molecules

2. search problem A) convergence
B) alleviating factors
C) aggravating factors

3. ensemble problem A) entropy
B) averaging
C) nonlinear averaging

4. experimental problem A) averaging
B) insufficient number of data
C) insufficient accuracy of data

Table 3: Four reasons why computer simulation is used in science.

Simulation can replace or complement an experiment:

1. experiment
is impossible

collision of stars or galaxies
weather forcast

2. experiment
is dangerous

flight simulation
explosion simulation

3. experiment
is expensive

high pressure simulation
wind channel simulation

4. experiment
is blind

many properties cannot be observed on very
short time scales and very small space scales

Figure 4. Energy–entropy compensation at finite temperatures.
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the condensed phase can therefore only be described through
a conformational distribution, which in turn can be generated
by computer simulation. Similar considerations apply to
biomolecular systems: an energy-minimized structure of a
protein corresponds to a possible conformation at 0 K, and
lacks information on the conformational distribution of the
protein at physiological temperatures. This state of affairs has
consequences for the development of force fields: if a force
field is to be used in computer simulations above 0 K, its
parameters should be derived or calibrated taking into
account entropic effects for it to be consistent. In other
words, calibration of force-field parameters involves com-
puter simulations to generate configurational ensembles,
which makes it a more costly task than when only single
minimum-energy conformations or measured average struc-
tures are used.

A third problem in the development of a biomolecular
force field is the enormous variety of chemical compounds for
which adequate force-field parameters should be derived. If
the force-field parameters are (to some extent) transferable
between atoms or groups of atoms in different molecules, this
problem may be (at least partially) alleviated. In general,
putting the force-field terms on a physical (instead of a purely
statistical) basis and keeping them simple and local will
enhance the transferability of parameters from one com-
pound to another. In addition, by keeping them computa-
tionally simple, the efficiency of biomolecular simulation can
be enhanced, which facilitates the sampling of configurational
space.

2.1. Functional Form of the Force-Field Terms

Most biomolecular force fields are composed of terms that
possess a rather simple functional form.[6] The GROMOS
force field, for example, consists of the following terms
[Eqs. (1)–(8)]:[7,10]

V bondðr;Kb,b0Þ ¼
XNb

n¼1

1=4Kbn ½b
2
n�b2

0n
�2 ð1Þ

V angleðr;Kq,q0Þ ¼
XNq

n¼1

1=2Kqn
½cosðqnÞ�cosðq0n Þ�2 ð2Þ

V harðr;Kx,x0Þ ¼
XNx

n¼1

1=2Kxn
½xn�x0n �

2 ð3Þ

V trigðr;Kf,d,mÞ ¼
XNf

n¼1

Kfn
½1 þ cosðdnÞ cosðmn fnÞ� ð4Þ

V LJðr;C12,C6Þ ¼
X
pairs i,j

�
C12ði,jÞ
r12ij

�C6ði,jÞ
r6ij

�
ð5Þ

V Cðr;qÞ ¼
X
pairs i,j

qi qj
4pe0e1

1
rij

ð6Þ

V RFðr;qÞ ¼
X
pairs i,j

qi qj
4pe0e1

ð� 1
2Crf r

2
ijÞ

R3
rf

ð7Þ

V RFc ðr;qÞ ¼
X
pairs i,j

qi qj
4pe0e1

ð12Crf�1Þ
Rrf

ð8Þ

The first four equations describe the four types of covalent
(bonded) interactions mentioned before, while the last four
specify the nonbonded interactions: the van der Waals inter-
action cast in the form of a Lennard–Jones term, the
electrostatic Coulomb interaction between (partial) atomic
charges qi, the distance-dependent and distance-independent
(constant) interactions arising from the dipolar reaction field
(RF) induced by the charge distribution inside the cut-off
sphere through the continuous dielectric medium outside this
cut-off sphere. Since this force field covers a variety of
molecules (including polypeptides, polysaccharides, nucleic
acids, lipids), it contains a large set of parameters:[7] 52 types
of bonds [Eq. (1)], 54 types of bond angles [Eq. (2)], 3 types
of improper (harmonic) dihedral angles [Eq. (3)], 41 types of
proper torsional (trigonometric) dihedral angles [Eq. (4)],
van der Waals interactions of 53 types of atoms [Eq. (5)], and
many different sets of atomic charges for the typical polar or
charged groups of atoms in the molecules mentioned above
[Eqs. (6)–(8)].[7,10]

The functional forms are chosen such that they are easy to
compute. The nonbonded interactions only contain pair
terms, and the more complex three- and four-body covalent
terms [Eqs. (3) and (4)] are much fewer in number than the
nonbonded pair terms. The solvent part of this biomolecular
force field only contains nonbonded terms, the intramolecular
degrees of freedom of solvent molecules are kept frozen. The
major computational effort resides in evaluating the non-
bonded interactions.

2.2. Calibration of Force-Field Parameters

Having specified the functional form of the interaction
terms, the formidable task of finding appropriate, consistent
values for the hundreds of force-field parameters remains to
be addressed. This task involves the choice of type of data,
type of systems, thermodynamic phase, and properties to be
used as the calibration set for specific force-field parameters.
The choices made for the GROMOS force field are summar-
ized in Table 4. Since biomolecular systems are generally in
the condensed phase, data for the condensed phase (exper-
imental and theoretical) are used whenever possible. Fur-
thermore, to maximize the transferability of parameters
between groups of atoms in different molecules, only data
for small molecules are used. When using data from large
molecules such as proteins (e.g. from the protein data bank)
properties of groups of atoms may be dependent on their
particular environment in the folded molecule. Furthermore,
the protein data bank contains structures measured at widely
different thermodynamic conditions (pH value, ionic
strength, etc.). Finally, certain properties will be strongly
related to specific force-field parameters and only weakly to
others. This situation offers the opportunity to reduce the
calibration effort by optimizing specific subsets of parameters
separately against a limited set of properties.
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The following strategy was applied in developing the
GROMOS force field (Table 4).[7] The geometric parameters
for the covalent interaction terms were obtained from the
crystal structures of small molecules, and the corresponding
vibrational force constants came from infrared spectroscopic
data on small molecules in the gas phase. The nonbonding
interaction parameters C12, C6, and q were obtained by fitting
heats of vaporization, densities of pure liquids, and free
energies of solvation of small solutes in polar and apolar
solvents as obtained from molecular dynamics (MD) simu-
lations to data obtained by experiment. Dielectric permittiv-
ities and diffusion properties of liquids were used as
secondary data in this parametrization. Electron densities
obtained from quantum-mechanical calculations were only
used to obtain an initial guess for partial atomic charges,
because they may depend strongly on the environment (gas
phase or condensed phase) as a result of polarization effects.
Torsional-angle parameters were derived by fitting torsional-
energy profiles to quantum-mechanical data, thus leaving the
set of parameters for the nonbonding interactions untouched.

A biomolecular force field forms, in principle, a consistent
set of parameters for both solute molecules (proteins, lipids,
saccharides, nucleotides) and solvent molecules (water,
alcohols, DMSO, chloroform, etc.). Changing a subset of
parameters by taking them from other force fields or models
may introduce inconsistencies and inaccuracy.

The simulation of peptide or protein folding (Figure 1)
necessitates that the relative free energies of solvation of the
20 amino acid residues in polar solution (water) versus
nonpolar solution (cyclohexane) as obtained from simulation
compares well with the corresponding experimental data,
since these differences are likely to largely determine the

driving force for folding. Gibbs free energies of solvation
obtained with the GROMOS 53A6 force field[7] are shown in
Figure 5. The average absolute deviations from experiment
for the 18 amino acid side chains (except Gly and Pro) are
1.0 kJmol�1 in water and 2.0 kJmol�1 in cyclohexane. Both
values are smaller than the value of kBT, which makes the
53A6 GROMOS force field suitable for studies on protein
folding.

Table 4: Choice of calibration sets of data, systems, properties, and thermodynamic phase for the derivation of the GROMOS biomolecular force-field
parameter values.[7]

Type of data Type of system Phase Type of properties Force-field
parameter

structural data (exptl) small
molecules

crystalline
solid phase

molecular geometry:
bond lengths, bond angles

b0, q0, x0

spectroscopic
data (exptl)

small
molecules

gas phase molecular vibrations:
force constants

Kb, Kq, Kx

thermodynamic
data (exptl)

small
molecules,
mixtures,
solutions

condensed
phase

heat of vaporization, density,
partition coefficient,

free energy of solvation

van der Waals:
C12(i,j), C6(i,j), qi(final)

dielectric
data (exptl)

small
molecules

condensed
phase

dielectric permittivity,
relaxation

charges qi

transport
data (exptl)

small
molecules

condensed
phase

diffusion and
viscosity coefficients

C12(i,j), C6(i,j), qi

electron densities
(theor.)

small
molecules

gas phase quantum-chemical calculation of atom charges charges qi(initial)

energy profiles
(theor.)

small
molecules

gas phase quantum-chemical calculation of torsional-angle
rotational profiles

Kf, d, m
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Figure 5. Comparison of the calculated (MD simulation using the
GROMOS 53A6 force field) and experimental Gibbs free energies of
solvation in cyclohexane (circles) and in water (squares) of 18 amino
acid analogues (no Gly and Pro).[7]
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2.3. Long-Range Forces

Electrostatic interactions play a major role in biomolec-
ular systems. Compared to covalent and van der Waals
interactions, their range is relatively long, because electro-
static interactions between molecules or parts of molecules at
a distance r from each other decrease only slowly with
increasing value of r :
1. The interaction energy between two charged molecules is

proportional to r�1, while the corresponding force, the
(negative) spatial derivative of the energy, is proportional
to r�2.

2. The interaction energy between a neutral molecule with a
dipole moment and a charged molecule is proportional to
r�2, while the corresponding force is proportional to r�3.

3. The interaction energy between two neutral molecules
with dipole moments is proportional to r�3, while the
corresponding force is proportional to r�4.

Continuing this multipole expansion with quadrupole
moments, octupole moments, etc. shows that even the
interaction between two neutral molecules without dipole
moments, but with quadrupole moments is longer ranged
(proportional to r�5) than the van der Waals dispersion
interaction, which is proportional to r�6. If we consider the
electrostatic energy of a single charge, dipole, or quadrupole
with all charges, dipoles, and quadrupoles surrounding it, we
have to integrate the electrostatic interaction V el(r)4pr2 from
r to infinity, where 4pr2dr is the volume of the spherical shell
between r and r+dr surrounding the central charge, dipole, or
quadrupole [Eq. (9)].

Z1

0

V elðrÞ 4pr2 dr ð9Þ

However, the integral (9) only converges under the
conditions of Equation (10):

V elðrÞ 	 r�n, n > 3 ð10Þ

Thus, the total electrostatic energy of ionic systems
depends on the spatial boundary conditions that restrict the
range of the integral (9) in practical calculations. The gradual
decrease of pair energies and forces with the interatomic
separation r means that the results of simulations will depend
on the way long-range interactions are treated in the force
and energy calculations.

Two techniques are predominantly used currently to
evaluate long-range (electrostatic) interactions in biomolec-
ular systems (Figure 6). In the so-called lattice-sum methods
the system is put into a particularly shaped box (cubic,
rectangular, triclinic, truncated octahedral) and surrounded
by an infinite number of identical copies of itself. In this way
the boundary problem is moved to infinity, but, unfortunately,
is not removed. Moreover, an artificial periodicity is enforced
upon the system. Lattice-sum methods are the Ewald
summation,[12] the particle–particle/particle–mesh (P3M)
method[13] and the particle–mesh–Ewald (PME) method.[14]

An alternative method is to approximate the medium beyond
a given cut-off distance Rrf from a specific atom or molecule
by a dielectric continuum of uniform permittivity erf and ionic
strength Irf.

[15, 16] Such a dielectric continuum produces a
reaction field in response to the charge distribution inside the
cut-off sphere with radius Rrf, which can easily be calculated
for every atom or molecule [see Equations (7) and (8)]; the
constant Crf depends on Rrf, erf, and Irf.

[10,16]

Both methods are approximations of different type. The
reaction-field approach is a mean-field approximation of the
real charge distribution beyond a distance Rrf, and treats its
dielectric response in a spherically symmetric way. It does not
introduce artificial periodicity. The lattice-sum approach does
not involve averaging, but treats interactions beyond the box
size as periodic. Both approximations and their effects have
been investigated for various systems.[3–5,17–19]

The effect of different treatments of the long-range
electrostatic interactions on the free energy of hydration of
a charged (ionic) solute in water is illustrated in Table 5.[20]

The results show that the method used to handle long-range
forces and its parameters (e.g. Rrf) are of great importance
when parametrizing a force field. For example, the non-
bonding parameters of the OPLS force field[28, 29] have
generally been obtained from calculations with cut-off radii
Rc= 0.95–1.5 nm, with the longer-range van der Waals inter-
actions being included through correction formulae (see for
example, Ref. [30]). The GROMOS force field was calibrated
using Rc= 1.4 nm and a reaction field force.

2.4. Testing Biomolecular Force Fields

Having developed a biomolecular force field through
calibration of its parameters to reproduce a variety of
properties of small molecules, this force field remains to be
tested by application to biomolecular systems containing
different, larger molecules in the condensed phase. Tests
should include proteins, saccharides, or nucleotides in aque-
ous solution, and comparisons should be made for simulated

C)

A)

B)

Figure 6. Two methods for calculating long-range electrostatic energies
and forces in a molecular system: A) real system with explicit solvent;
B) periodicity used in the Ewald, P3M, and PME methods, and
C) continuum approximations beyond a given cut-off distance.
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properties with available experimental values of measurable
ones. Here, one may think of comparing simulated conforma-
tional distributions in crystals with averages derived from
measured X-ray diffraction data. NOE (nuclear Overhauser
effect) intensities, 3J-coupling constant, and chemical shift
values calculated from simulations of solutes in solution may
be compared with the corresponding averages derived from
NMR experiments. However, reproduction by simulation of a
particular folded structure derived from experiment is neither
a necessary[31] nor a sufficient condition for a force field to be
correct. The force field should be able to reproduce the
conformational distribution of the solute as a function of the
thermodynamic conditions; for example, it should predict the
correct melting temperature of a particular fold.

A particular challenge to biomolecular force fields is the
prediction of the fold of a polypeptide in solution as a
function of its amino acid residue composition and the type of
solvent. How well this challenge is met by the GROMOS
force field is illustrated in Figures 7 and 8. Using the
GROMOS force-field parameter sets, 43A1 and 45A3 left-
handed or right-handed helices of different types as well as
b turns were found as dominant conformations in MD
simulations of b- and a-peptides in methanol or water
(Figure 7), a result that is in agreement with the dominant
conformations derived from NOE data.[32–37] However, since
these parameter sets were shown to underestimate the

magnitude of the hydration (Gibbs) free energies for amino
acid analogues,[7,38,39] a reparametrization was carried out
which led to the 53A6 set.[7] Figure 8 illustrates the improve-
ment obtained by including solvation free energies of polar
compounds into the calibration set in the context of the
prediction of the correct fold of a b-dodecapeptide containing
many polar side chains. While the 45A3 set could not
reproduce the experimentally observed helix, the 53A6 set
did. Properties that are less sensitive to small (free) energy
differences were, however, well reproduced by both param-
eter sets.[36]

Thus, a particular force field can only be (in)validated by
investigating molecular or system properties that are sensitive
to the particular simulation parameters and conditions.

2.5. Perspectives in Force-Field Development

There is still room for improvement in current biomolec-
ular force fields. First, the van der Waals parameters and
partial charge distributions of charged moieties should be
based on free energies of solvation, as has been done for those
of apolar and polar neutral moieties.[7] Examples of such
groups are the side chains of Arg, Lys, Asp, and Glu amino
acid residues or phosphate groups occurring in DNA, RNA,
and lipids. However, this is easier said than accurately done

Table 5: Computation of methodology-independent ionic hydration free energies from molecular dynamics simulations with explicit solvent.[a]

Method Nw Rrf DFsim DFncb DFper DFsum DFsrf DF0hyd

P3M 4 – �45.8 0.0 �293.2 �61.9 �3.54 �390.82
P3M 8 – �118.7 0.0 �259.7 �69.8 �1.97 �436.62
P3M 16 – �164.8 0.0 �221.5 �74.5 �1.04 �448.15
P3M 32 – �209.9 0.0 �183.9 �77.1 �0.54 �457.67
P3M 64 – �249.0 0.0 �150.0 �78.4 �0.27 �464.02
P3M 128 – �279.8 0.0 �121.1 �79.1 �0.14 �466.45
P3M 256 – �303.8 0.0 �97.1 �79.4 �0.07 �466.71
P3M 512 – �324.8 0.0 �77.6 �79.6 �0.03 �468.35
P3M 1024 – �340.5 0.0 �61.8 �79.7 �0.02 �468.35
P3M 2048 – �353.5 0.0 �49.2 �79.7 �0.01 �468.73
RF 512 0.8 �275.9 �128.1 �1.47 �76.8 0.0 �468.55
RF 512 1.0 �298.6 �102.7 �3.76 �77.4 0.0 �468.77
RF 512 1.2 �311.0 �85.7 �6.76 �77.6 0.0 �467.49
RF 1024 0.8 �278.4 �128.1 �0.38 �76.8 0.0 �469.97
RF 1024 1.0 �300.8 �102.7 �1.26 �77.4 0.0 �468.49
RF 1024 1.2 �315.6 �85.7 �2.72 �77.6 0.0 �468.03
RF 2048 0.8 �277.9 �128.1 �0.07 �76.8 0.0 �469.20
RF 2048 1.0 �301.7 �102.7 �0.32 �77.4 0.0 �468.48
RF 2048 1.2 �318.4 �85.7 �0.87 �77.6 0.0 �468.98

[a] Standard hydration free energy DFhyd of the sodium cation calculated for different system sizes (number of water molecules Nw) by using the
P3M[13,21,22] or reaction-field[15, 16] (with different cutoff radii Rrf ) methods for the treatment of electrostatic interactions. The SPC water model

[23] was
used together with the Lennard–Jones ion–water interaction parameters of Straatsma and Berendsen.[24] The simulations were carried out at constant
volume, in periodic cubic boxes of edge L= [(Nw+1)1�1]1/3 with 1=33.427 nm�3. For the P3Mmethod a spherical hat charge-shaping function of width
0.4 nm (or 0.26 nm for Nw
32) was used,[25] together with an assignment function of order three, a finite-difference operator of order two, three alias
vectors for the calculation of the optimal influence function, and a grid spacing of 0.05 nm (or 0.0166 nm for Nw
32).[21] For the RF method, the
reaction-field radius was set to Rrf and the solvent permittivity to 66.6. A cut-off truncation was applied based on the oxygen atom as the molecular
center. The raw charging free energies DFsim (calculated from the simulations using the scheme proposed by Hummer et al.,[26] based on three ionic
charge states of 0, 0.5, and 1e) are corrected (based on a solvent permittivity of 66.6 and an approximate ionic radius of 0.2 nm) for the effect of non-
Coulombic interactions DFncb, for artificial periodicity DFper, for the use of an improper summation scheme for the electrostatic potential DFsum
(conversion from P-sum to M-sum convention[27]), for the effect of the interfacial potential at the ionic surface on the average potential within the
computational box DFsrf, for the work of cavity formation (DFcav ; 5.67 kJmol

�1), and for the compression work DFcmp (7.95 kJmol
�1; corresponding to

the standard-state correction for a gas at a reference pressure of 1 bar), leading to final standard (intrinsic) values DF0hyd.
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because of the large solvation free energies of single ions (of
the order of several hundred kBT) and the technical
difficulties in obtaining such data from experiment[40] and
from simulations.[27]

Second, the properties of solvent
mixtures, as these are used in exper-
imental protein denaturation stud-
ies, should be evaluated as a function
of their composition. The thermody-
namic properties, such as energy and
density of mixing, are of particular
importance when the free energy of
solvation and folding of solutes is to
be calculated.[8, 9,41–43] The properties
of a mixture of two solvents need not
be a linear function of its composi-
tion, as illustrated for water/
dimethyl sulfoxide (DMSO) mix-
tures in Figure 9. Only the dielectric
permittivity e shows a linear behav-
ior, while the other properties con-
sidered show different types of non-
linearity.[42]

Currently used biomolecular
force fields treat the electronic
polarization of the molecules in an
average manner, which leads, how-
ever, to limited accuracy when sys-
tems under varying dielectric condi-
tions are considered.[44–48] The limi-
tation could be removed by the
introduction of explicit polarizability
into biomolecular force fields,[49,50]

which requires, however, a more or
less complete reparametrization of
the force field, followed by extensive
testing for realistic systems. Clearly,
this is a formidable task. Recently,
the first polarizable biomolecular
force fields have been proposed.[51–53]

Their performance in solvation free
energy calculations or in reproduc-
ing folding equilibria has not yet
been reported, and should be inves-
tigated.

To be able to efficiently simulate
large biomolecular systems and slow
processes, such as membrane or
micelle formation, it would be help-
ful to formulate so-called coarse-
grained molecular models, in which
a number of covalently bound atoms
are treated as a single particle or
bead.[54–59] Such models can be made
orders of magnitude faster in simu-
lations than atomic models, at the
expense of losing atomic detail.
Models of this type have been suc-
cessfully applied to membrane and

micelle formation.[60] A comparison of the properties
obtained from coarse-grained models with those from
atomic models is required to evaluate the effect of the
approximations and simplifications made.

Figure 7. Folding of different polypeptides and peptoides into different folds in different solvents by MD
simulation. The folded structure (red), modeled from the available NMR or X-ray experimental data, is
superimposed on a folded structure (blue) representing the most populated conformation from the MD
simulations of the folding/unfolding equilibrium.[32–37] The solvents are methanol (A–C, E), water (D), and
water or chloroform (F). The versions of the GROMOS force field used are: 43A1 (A–D), 45A3 (F), and
53A6 (E).
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3. The Search Problem

A biomolecular system is generally characterized by a
very large number of degrees of freedom (104–106 or more).
The motions along these degrees of freedom show a variety of
characteristics, from highly harmonic to anharmonic, chaotic,
and diffusive. Moreover, correlations are present that cover a
wide range of time and spatial scales, from femtoseconds and
tenths of nanometers to milliseconds and micrometers. The
energy hypersurface of such a system, which is defined by the
potential-energy function [e.g. Eqs. (1)–(8)], is therefore a
very rugged surface, with energy basins and mountains of a
wide range of depths or heights and spatial extent. This makes
the search for the global energy minimum of such a high-
dimensional function—or rather the search for those regions
of the surface that contribute most to the free energy of the
system—a daunting if not impossible task.

As mentioned before, the state of a biomolecular system
cannot be described by a single global minimum energy
configuration or structure, but only by a statistical-mechanical
ensemble of configurations, in which the weight of a config-
uration x is given by the Boltzmann factor [Eq. (11); kB is the
Boltzmann constant and T the (absolute) temperature].

PðxÞ 	 exp ð�VðxÞ=kB TÞ ð11Þ

The exponential weighting in Equation (11) implies that
high-energy regions of the energy hypersurface will not
contribute configurations that are relevant to the state of the
system, unless they are very numerous (entropy). The
equilibrium properties of the system are dominated by

those parts of configuration space, for which V(x) is low.
Therefore, one of the fundamental challenges to biomolecular
modeling is to develop methodology to efficiently search the
vast biomolecular energy surface for regions of low energy.

Below, we only mention and classify the major techniques
that are currently used to search and sample configuration
space.[61–63] There are also search and sampling techniques in
which not only the molecular coordinates x serve as variables,
but also their Boltzmann probabilities P(x). A discussion and
examples of these so-called probability search techniques can
be found in Refs. [61,64,65]

3.1. Methods to Search and Sample Configuration Space

Avariety of search methods is available, each with its own
particular strengths and weaknesses, which depend on the
form of the function V(x) and the number and types of
degrees of freedom in the system. Two basic types of search
methods can be distinguished: systematic and heuristic.

Systematic or exhaustive search methods scan the com-
plete or a significant fraction of the configuration space of the

Figure 9. Properties of water/DMSO mixtures at 298 K and 1 atm as a
function of the mole fraction of DMSO (xDMSO) from MD simula-
tions.[42] DHmix : mixing enthalpy, DVexc : excess volume, 1: density, e :
relative dielectric permittivity, D : diffusion coefficient (panel E: DMSO,
panel F: water), t2: rotational correlation time (DMSO), h : shear
viscosity. Values from simulation: ~ SPC water model, & SPC/L water
model; experimental values: O and *.

Figure 8. Root-mean-square deviation (rmsd) of the positions of back-
bone atoms in MD trajectory structures from the helical model
structures derived from NMR data for two b-peptides in methanol.
A) The peptide containing polar side chains only shows the experimen-
tal fold with the newer force-field parameter set 53A6.[36] B) The other
peptide is equally well folded by using the old (45A3) and the new
(53A6) force fields, and only data for the former are shown.
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biomolecular system. Particular subspaces can be excluded
from the search without reduction in the quality of the
solution found by applying rigorous arguments that mean that
these subspaces cannot contain the desired solution.[66] Such
arguments are based on a priori knowledge, often of physical
or chemical nature, about the structure of the space or energy
hypersurface to be searched. Systematic search techniques
can only be applied to small molecules with only a few
degrees of freedom,[67–70] because of the exponential growth of
the required computing effort as the number of degrees of
freedom included in the search increases.

Heuristic search methods, although visiting only a tiny
fraction of the configuration space, aim at generating a
representative (in the Boltzmann weighted sense) set of
system configurations. These methods may generally be
divided into three types (see also Table 7:
1. Nonstep methods, in which a series of system configura-

tions is generated, which are independent of each other.
An example is the so-called distance-geometry metric-
matrix method,[72,73] which generates, at least in principle,
an uncorrelated series of random configurations for a
search problem that can be cast into a distance-based
form.

2. Step methods that build a complete molecular or system
configuration from configurations of fragments of the
molecule or system in a step-wise manner. Examples are
the build-up procedure of Gibson and Scheraga,[74,75]

combinatorial build-up methods that make use of dynamic
programming techniques,[76] and Monte Carlo (MC) chain-
growing methods,[77, 78] such as the so-called configura-
tional bias Monte Carlo (CBMC) technique.[79]

3. Step methods, such as energy minimization (EM), Met-
ropolis Monte Carlo (MC), molecular dynamics, and
stochastic dynamics (SD),[80] that generate a new config-
uration of the complete system from the previous config-
uration. These methods can be further classified according
to the way in which the step direction and step size are
chosen (see Table 6). Energy minimization can be based
on only energy values and random steps (simplex meth-
ods), or on energy and energy gradient values (steepest-
descent and conjugate-gradient methods), or on second-
order derivatives of the energy (Hessean matrix methods).
In MC methods the step direction is taken at random, and
the step size is limited by the Boltzmann acceptance
criterion: when the energy of the system changes by DV<

0, the step in configuration space is accepted, while for

DV> 0, the step is accepted with probability exp(�DV/
kBT). In MD simulation the step is determined by the
force (the negative of the local gradient @V/@x) and the
inertia of the degrees of freedom, which serves as a short-
time memory of the path followed so far. In SD
simulations a random component is added to the force,
the size of which is determined by the temperature of the
system and the atomic masses and friction coefficients. In
the potential-energy contour tracing (PECT) algorithm[81]

and in the potential-energy annealing conformational
search (PEACS) algorithm[71] the energy values are
monitored and kept constant (PECT) or annealed
(PEACS) to locate saddle points and pass over these.
There exists a large variety of search procedures based on
stepping through configuration space using a combination
of the five mentioned basic elements (energy, gradient,
Hessean, memory, and randomness) combined in one way
or another.[61]

The efficacy of search methods for biomolecular systems
is severely restricted by the nature of the energy hypersurface
V(x) that is to be explored to find low-energy regions. The
occurrence of a multitude of high-energy barriers between
local minima means that the radius of convergence of the step
methods is generally very small. Therefore, a variety of
techniques has been developed to enhance the search and
sampling power of searching methods. Three general types of
search and sampling enhancement techniques are distin-
guished in Table 7.[61]

Table 6: Heuristic methods to search configuration space for config-
urations x with low energy V(x).[a]

Reason for the change Method
EM MC MD SD PEACS

energy yes yes no no yes
energy gradient yes no yes yes yes
second derevative of the energy yes no no no no
memory no no yes yes yes
randomness yes yes no yes no

[a] EM: energy minimization, MC: Monte Carlo, MD: molecular
dynamics, SD: stochastic dynamics, PEACS: potential energy annealing
conformational search.[71]

Table 7: Techniques to enhance the searching and sampling power of
simulation methods.[a]

1. Deformation or smoothening of the potential-energy surface
a) omission of high-resolution structure factor data in structure

refinement based on X-ray diffraction data
b) gradual introduction of longer range distance bounds

- in structure refinement based on NOE data[82]

c) softening of the hard core of atoms in the nonbonding interaction
(“soft-core” atoms)[83]

d) reduction of the ruggedness of the energy surface through a
diffusion-equation type of scaling[8384]

e) avoiding the repeated sampling of an energy well through local
potential-energy elevation or conformational flooding[85,86]

f) softening of geometric restraints derived from experimental data
(NMR, X-ray) through time averaging[87,88]

g) circumvention of energy barriers through an extension of the
dimensionality of the Cartesian space (4D-MD)[89]

h) freezing of high-frequency degrees of freedom through the use of
constraints[90]

i) coarse-graining the model by reduction of the number of
interaction sites[54–59]

2. scaling the system parameters
a) temperature annealing[91]

b) mass scaling[92]

c) mean-field approaches[93]

3. multicopy searching and sampling
a) genetic algorithms[94]

b) replica-exchange and multicanonical algorithms[62]

c) cooperative search: SWARM [95]

[a] For details see Refs. [60–62] and references therein.
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3.1.1. Deformation or Smoothening of the Potential-Energy
Hypersurface to Reduce Barriers

a) Generally, a smoothening of the potential-energy function
V(x) allows for a faster search for its minima. This
technique has been applied to different problems, such as
structure determination based on X-ray diffraction or
NMR spectroscopic data, conformational search, and
protein-structure prediction. In method Ia of Table 7, the
electron density of a biomolecular crystal is smoothed by
the omission of high-resolution diffraction intensities
when back calculating the electron density from these
through Fourier transforms. This smoothening enhances
the radius of convergence of the structure refinement.

b) When building a protein structure from atom–atom
distance data obtained from NMR spectroscopy, the
convergence of the configurational search process is
enhanced by gradually introducing distance restraints
that connect atoms at longer distances along the poly-
peptide chain in the potential-energy function. This is
called a variable-target function method.[82]

c) The hard core of atoms, that is, the strong repulsive
interaction between overlapping atoms, is responsible for
many barriers on the energy hypersurface of a molecular
system. These barriers can be removed by making the
repulsive short-range interactions between atoms
“soft”.[96–99] Atoms with soft cores smooth the energy
surface and lead to strongly enhanced sampling.[83]

d) In the deformation methods based on the diffusion
equation,[83,84] the deformation of the energy surface
during a simulation is made proportional to the local
curvature (second derivative) of the surface, which leads
to a preferential smoothening of the sharpest peaks and
valleys in the surface and a very efficient search.

e) Incorporation of information on the energy hypersurface
obtained during the search into the potential-energy
function is another possibility to enhance sampling.
Once a local energy minimum is found, it is removed
from the energy surface by a suitable local deformation of
the potential-energy function. This idea is the basis of the
deflation method,[100] the local-elevation search
method,[85] recently also called meta-dynamics[101] , and
the method of conformational flooding.[86]

f) Another way to introduce a memory into the search is the
use of a potential-energy term which uses a running
average of a coordinate over the trajectory or ensemble
generated so far rather than its instantaneous value.[102]

Application of this type of time-dependent or ensemble-
dependent restraints in protein-structure determination
based on NMR spectroscopic or X-ray data leads to a
much enhanced sampling of the molecular configuration
space.[87,88]

g) Barriers in the energy hypersurface can be circumvented
by an extension of the dimensionality of the configuration
space beyond the three Cartesian ones. The technique of
energy embedding locates a low-energy conformation in a
high-dimensional Cartesian space and gradually projects
this conformation to three-dimensional Cartesian space
while perturbing its energy and configuration as little as

possible.[103] Variations on the original procedure have
been proposed.[104–107] Dynamic search methods can also
be used in conjunction with an extension of the dimen-
sionality. Energy barriers in three-dimensional space can
be circumvented by performing MD simulations in four-
dimensional Cartesian space,[89] and free-energy changes
can be calculated.[108]

h) A long-used standard technique to smooth the energy
surface is to freeze the highest-frequency degrees of
freedom of a system through the application of con-
straints.[90,109–113] Bond-length constraints are applied as
standard in biomolecular simulation and allow for a four
times longer time step.[114] High-frequencymotion can also
be eliminated by using soft constraints:[115] the (bond-)
constraint lengths change adiabatically as a result of the
forces.

3.1.2. Scaling of System Parameters To Enhance Sampling

a) The technique of simulated temperature annealing[91]

involves simulation or search at a high temperature T,
followed by gradually cooling the system. By raising the
temperature, the system may more easily surmount
energy barriers, so a larger part of configurational space
can be searched. The technique of simulated temperature
annealing has been widely used in combination with MC,
MD, and SD simulations. An example of potential-energy
annealing can be found in Ref. [71].

b) Scaling of atomic masses can be used to enhance sampling.
In the classical partition function and in case no con-
straints are applied, the integration over the atomic
momenta can be carried out analytically, separately
from the integration over the coordinates. Thus, the
atomic masses do not appear in the configurational
integral, which means that the equilibrium (excess)
properties of the system are independent of the atomic
masses. This freedom can be exploited in different ways to
enhance the sampling. By increasing the mass of specific
parts of a molecule, its relative inertia is enhanced, which
eases the surmounting of energy barriers,[92] and may
allow for larger time steps.

c) Enhanced sampling by a mean-field approximation is
obtained by separating the biomolecular system into two
parts (A and B), each of which moves in the average field
of the other. The initial configuration of the system
consists of NA identical copies of part A and NB identical
copies of part B. The positions of corresponding atoms in
the identical copies may be chosen to be identical. The
force on atoms of each copy of part A exerted by the
atoms in all copies of part B is scaled by a factor NB

�1 to
obtain the mean force exerted by part B on the individual
atoms of part A. Likewise, the force on atoms of each
copy of part B exerted by the atoms in all copies of part A
is scaled by a factor NA

�1. The forces between different
copies of part A are zero, and so are the forces between
different copies of part B. The MD simulation involves the
integration of Newton7s Equation of motion, f=ma, for
all copies of parts A and B simultaneously. Thus, one
obtains NA individual trajectories of part A in the mean
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field of part B and vice versa. This situation comes at the
loss of correct dynamics: Newton7s third law, fAB=�fBA is
violated. The technique only enhances efficiency when the
system is partitioned into parts of very different sizes (for
example, A!B) and the bigger part is represented by one
copy: NB= 1. Enhanced searching and sampling proce-
dures based on a mean-field approximation have been
proposed in different forms,[93,116–127] and have been
applied to the diffusion of CO molecules in the field of
a protein molecule,[93,118] to the conformational equilibri-
um of protein side chains,[117] to the determination of
protein-loop conformations,[123] and to the search for the
minimum-energy conformations of polypeptides[126,127]

and nucleic acid segments[128] as well as to the search for
binding sites in enzymes.[129–131]

3.1.3. Multicopy Simulation with a Given Relationship between
the Copies

In the mean-field approach, multiple copies of a part of
the system were simulated. This idea has also been used in
other ways to enhance searching and sampling (Table 7).
a) In genetic algorithms[132] a pool of copies of the biomo-

lecular system in different configurations is considered,
and new configurations are created and existing ones
deleted by mutating and combining (parts of) configu-
rations according to a given set of rules.

b) In the so-called replica-exchange algorithm multiple
copies of the system are simulated by MC, MD, or SD,
each at a distinct temperature. From time to time copies
from simulations close in temperature are exchanged
through an exchange probability based on the Boltzmann
factor [Eq. (11)]. This leads, within the limit of infinite
sampling, to Boltzmann-distributed (canonical) ensem-
bles for each temperature.[133] So-called multicanonical
algorithms are a generalization of this procedure.[62] These
types of algorithms have been used to simulate proteins
in vacuo.[133] The inclusion of solvent degrees of freedom
may impair the efficiency of the algorithm.[134] Dynamic
information is lost in the exchanges and for short sampling
times the entropy content is likely to be biased at the
lower and upper ends of the temperature range consid-
ered.

c) The so-called SWARM type of MD[95] is based on the idea
of combining a collection (or swarm) of copies of the
system each with its own trajectory into a cooperative
multicopy system that searches configurational space. To
build such a cooperative multicopy system, each copy is, in
addition to physical forces arising from V(x), subject to
(artificial) forces that drive the trajectory of each copy
towards an average of the trajectories of the swarm of
copies. This effect is analogous to the intelligent and
efficient behavior of a whole swarm of insects which can
be achieved even in the absence of any particular
intelligence or forethought of the individuals. SWARM-
MD is less attracted by local minima and is more likely to
follow an overall energy gradient toward the global
energy minimum.

This overview of methods to search and sample configura-
tional space is rather limited. More extensive reviews can be
found in Refs. [61–63] Since biomolecular configurational
space is too large to be exhaustively sampled, one generally
has to use heuristic search methods in biomolecular modeling
studies. The overview (Tables 6 and 7) of types of methods
and tricks that can be used and combined to obtain a powerful
search method may assist in the choosing of a combination of
methods and tricks that will be particularly suited to the
specific problem or energy hypersurface of interest.

3.2. Convergence of Simulated Properties

The time scales involved in the dynamics of different
properties of biomolecular systems range from femtoseconds
to seconds or even longer. Limited computing power means
that current MD simulations of biomolecular systems cover
nanoseconds to tens or hundreds of nanoseconds, depending
on the system size. This poses the question as to whether such
time periods are long enough to yield reliable trajectory
averages for the different molecular or system properties.
Trajectory averages will generally only be representative
when the equilibration period of a simulation tequil is longer
than the relaxation time trelax (Q) of the propertyQ [Eq. (12)]
and when the sampling period tsample is much longer than
trelax(Q) [Eq. (13)].

tequil > trelaxðQÞ ð12Þ

tsample � trelaxðQÞ ð13Þ

If conditions (12) or (13) are not fulfilled, the trajectory
average hQ(t)it of the propertyQ will display a drift with time
or erratic behavior.[135–137]

The time scale associated with the change or relaxation of
a particular physical quantity calculated for a particular
biomolecular system will depend on 1) the type of molecular
system, 2) the thermodynamic state point, and 3) the partic-
ular quantity or property. This relationship is illustrated in
Figure 10 for the dynamics of b-heptapeptides in methanol
solution. At 298 K the dominant conformer is the 314-l helix,
which completely unfolds and refolds only a few times within
100 ns (panel A). At 340 K many more (un)folding events are
observed (panel B). Reducing the solvent viscosity to 1/3
(Panel C) or to 1/10 (Panel D) enhances the rate of the
(un)folding process considerably, and leads to improved
convergence of the statistics for the (un)folding equilibrium.
Panel E illustrates that the presence of longer and charged
side chains in the polypeptide solute slows down the
(un)folding process, thereby reducing the sampling (compare
with panel B).

Not only can different molecules or thermodynamic state
points show different relaxation times, but different proper-
ties also can do so. The potential energy of the solute and the
square of its total dipole moment (related to its dielectric
permittivity) relax faster than, for example, the average atom-
positional root-mean-square fluctuations for all atoms.[140,141]

System properties, such as the free energy of folding,
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converge even slower—in general more slowly than molec-
ular properties.[1,142]

The relaxation and dynamics of the various properties of a
biomolecular system can be analyzed in different ways:[135–137]

1. For equilibrium simulations one may monitor the time
series of a property Q(t), its average value hQ(t)it, or
fluctuations h(Q(t)�hQ(t)it)2i

1=2
t , or calculate its autocorre-

lation function hQ(t’)Q(t’+t)it’. The decay time of the
autocorrelation function or the build-up rate of the
trajectory averages gives an indication of the magnitude
of trelax(Q).[137]

2. When starting a simulation from a non-equilibrium initial
state, the rate of relaxation of Q(t) toward equilibrium,
measured over many non-equilibrium trajectories, will
give an indication of trelax(Q).

3. If different MD simulations starting from different initial
states do not converge to the same trajectory average for

propertyQ, it can be concluded that trelax(Q) is longer than
the simulation period.[143]

Further examples of different relaxation times of proper-
ties in various systems can be found in Refs. [135–137,140–
143].

3.3. Alleviation of the Search and Sampling Problems

Although the search and sampling problem with regard to
biomolecular systems looks formidable at first sight, the
characteristics of the energy hypersurface may alleviate these
problems. Simulations of (un)folding equilibria of polypep-
tides in solution using a thermodynamically calibrated force
field and an explicit representation of the solvent molecules
have shown that the unfolded or denatured state of these
polypeptides contains much fewer conformations significantly
populated at equlilibrium than there are possible polypeptide
conformations. In the case of peptides possessing 20 rotatable
torsional angles in their backbone, the use of physical,
realistic force fields representing the particular (nonbonding)
interactions between the various residues results in a reduc-
tion from 109 possible conformers to 103 relevant conform-
ers.[144–146] This is illustrated in Figure 11, where the number of
conformations visited during a MD simulation of a polypep-
tide and of another polymer of equal length are shown. This
number grows sublinearly for the b-heptapeptide in methanol
and levels off at about 200 conformations (Figure 11A),
whereas the number of visited (relevant) conformations for a
poly(hydroxybutanoate) molecule of similar length in chloro-
form grows linearly with time (Figure 11B), as would be
expected considering the number of possible conformations
for either molecule is about 109. The difference is due to the
presence of hydrogen-bond donor and acceptor atoms in the
b-heptapeptide, which restrict (through favorable hydrogen
bonding) the conformational space accessible to the molecule

Figure 11. Number of conformations as a function of time from MD
stimulation: A) A b-heptapeptide in methanol at 340 K;[138] b) (Val-Ala-
Leu)2-3-hydroxybutanoate in chloroform at 298 K.[147] For the definition
of a conformation (cluster of structures) we refer to Ref. [138].

Figure 10. Root-mean-square deviation of the positions of backbone
atoms in MD trajectory structures from the helical model structures
derived from NMR data for two b-heptapeptides of identical chain
lengths in methanol at 1 atm. The peptide with apolar side chains is
simulated at 298 K (A) and at 340 K (B–D).[32, 138] The viscosity of the
methanol solvent is reduced by a factor of 3 (C) and by a factor of 10
(D) through mass scaling. Raising the temperature or reducing the
solvent viscosity increases the rate of (un)folding. The peptide with a
few polar side chains is simulated at 340 K in normal methanol (E).
The polar side chains reduce the rate of (un)folding.[139]
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at the given temperature. In the absence of hydrogen-bond
donors in poly(hydroxybutanoate), this restriction is not
present.[147]

When a realistic force field is used, most of the config-
uration space will have a very high energy, which indicates
that the configuration space to be searched or sampled to
predict the most stable fold of a polypeptide or protein does
not grow exponentially with the system size or chain
length.[144]

3.4. Aggravation of the Search and Sampling Problems

The free energy F of a system of N particles in a volume V
at temperature T is a 6N-dimensional integral over all particle
coordinates r and momenta p of the Boltzmann factor of the
system Hamiltonian (kinetic plus potential energy) [Eq. (14);
h is Planck7s constant)].

FNVT ¼ �kB T ln
�
ðN! h3NÞ�1

Z Z
expð�Hðp,rÞ=kB TÞdpdr

�
ð14Þ

The factor N! must be omitted when dealing with
distinguishable particles. Since the integrand—the Boltzmann
factor—is everywhere positive, the omission of configurations
in the integral leads to systematic (not canceling) errors.
Equation (14) shows that not only will the global minimum
energy structure or configuration determine the free energy
or be representative for the configurational ensemble, but
other configurations of higher energy and greater abundance
will also do so. In other words, both energy U and entropy S
contribute to the free energy [Eq. (15)].

F ¼ U�TS ð15Þ

Solvent degrees of freedom may contribute significantly
to the free energy of folding.[148] From a 200-ns MD simulation
of the (un)folding equilibrium of a b-heptapeptide in
methanol, the differences between the enthalpy Hsolute and
entropy Ssolute of the peptide in the folded conformation and in
the unfolded conformations could be calculated as DHfolding

solute =

�64 kJmol�1 and TDSfolding
solute =�157 kJmol�1, which yields

DGfolding
solute =++ 93 kJmol�1. However, the Gibbs free energy of

folding as calculated for the whole system (peptide plus
solvent) from the ratio between the folded and unfolded
conformations appeared to be DGfolding=�8 kJmol�1. Thus,
changes in solute free energy alone cannot explain the
observed folding behavior. This underlines the important
role of the solvent in peptide folding and that entropy
calculations including solvent degrees of freedom are needed.
Unfortunately, extensive sampling of solvent degrees of
freedom aggravates the sampling problem.

Figure 12 illustrates another example of the observation
that an ensemble of relevant conformations needs to be
sampled to obtain accurate estimates of the free energy. It
shows a superposition of the configurations of a protein–
ligand complex that contribute most to the free energy of
binding of the biphenyl ligand to the ligand-binding domain of
the estrogen receptor. The configurations show sizeable

variation, and choosing only one of them to represent the
ensemble would lead to an inaccurate estimate of the binding
free energy.[149] In contrast to the assumptions of many
standard ligand–protein docking algorithms, this example
illustrates that inclusion of protein degrees of freedom in the
sampling is probably necessary to obtain accurate results.
This, unfortunately, aggravates the search and sampling
problem of docking algorithms.

A last example of the aggravation of the sampling
problem is the dependence of the magnitude of the hydro-
phobic effect on the size of a hydrophobic cluster and the
composition of the solvent. Understanding the hydrophobic
effect at the molecular level will help to understand the
driving forces for protein folding in which this effect is
thought to play an essential role. Figure 13 shows the free
energy of cluster growth for clusters with 2 to 46 methane

Figure 12. Calculation of the free energy of binding of 16 hydroxylated
polychlorinated biphenyls to the ligand-binding domain of the estrogen
receptor using MD simulation and the one-step perturbation tech-
nique.[149] Five protein–ligand structures that contribute most to the
free energy of binding of a particular ligand are shown.
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Figure 13. Gibbs free energy of methane cluster growth as a function
of the cluster size for MD simulations of different methane/urea/water
mixtures.[150] Nm is the number of methane molecules, Nu the number
of urea molecules, and Nw the number of water molecules. Solid line:
Nm=10, Nu=0, Nw=990; dotted line: Nm=40, Nu=0, Nw=960; dot-
dashed line: Nm=50, Nu=150, Nw=800; double dot-dashed line:
Nm=50, Nu=250, Nw=700; dashed line: Nm=50, Nu=0, Nw=950;
dot-double dashed line: Nm=64, Nu=250, Nw=686; Large fluctua-
tions at the end of the curves stem from poor statistics for large
cluster sizes.
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molecules in urea/water mixtures at different urea concen-
trations.[150] Methane aggregation and cluster formation only
becomes favorable at cluster sizes of at least five methane
molecules. A second observation is that high urea concen-
trations result in slightly enhanced clustering of methane
molecules, rather than in a reduction of the hydrophobic
interactions. This result hints against a mechanism of protein
denaturation by urea through a weakening of hydrophobic
interactions.[151] The sampling problem is aggravated by the
observed dependence of the free energy on the cluster size
and urea concentration, because both these degrees of
freedom need to be varied to obtain meaningful results.

3.5. Perspectives Regarding the Search and Sampling Problem

There is certainly still room to enhance the search and
sampling efficiency of biomolecular simulation techniques;
however, the past ten years have already shown encouraging
progress that we expect to be of benefit also for the study of
larger, more interesting and relevant biomolecular systems. In
particular the technique of smoothening the potential-energy
surface can enhance sampling through the use of soft-core
atoms, local-elevation, and diffusion-equation types of defor-
mation of the energy surface, and on another level through
the formulation of coarse-grained models. The efficiency of
local-elevation types of sampling[85] of the conformational
space of a dipeptide in aqueous solution is illustrated in
Figure 14. A much larger part of the Ramachandran map is
covered in a much shorter simulation time than when using a
standard MD simulation.

The so-called single-step perturbation methodology
allows ligand-binding free energies or solvation free energies

to be obtained for a great many compounds. This method uses
only a few simulations involving nonphysical reference states
with soft-core atoms chosen to widen the configurational
ensemble and offers orders of magnitude gains in efficiency
compared to standard (thermodynamic integration or pertur-
bation) free energy calculations.[149,152–156] This is illustrated in
Figure 15, where binding (Gibbs) free energies of 16 hydroxy-
lated polychlorinated biphenyls to the estrogen receptor as

calculated using the single-step perturbation technique from
only two MD simulations are compared to the corresponding
experimental values.[149] The average deviation of the simu-
lated values from the experimental ones is, at 2.5 kJmol�1,
smaller than the variation of 4.2 kJmol�1 in the experimental
values themselves. Thus, the force field used and the sampling
technique based on soft-core atoms are able to reproduce the
experimental values within the accuracy of their measure-
ment.

A reduction of the solvent viscosity (see Figure 10) may
also lead to considerably enhanced sampling without affecting
the nondynamic equilibrium properties of the system.

Figure 14. Ramachandran maps obtained from MD simulations of an
alanine dipeptide in (SPC/E) water. f/y distributions obtained by
standard MD for 5 ns (A) and 50 ns (B), and by local-elevation (LE)
MD for 0.5 ns (C) and 5 ns (D),[85] showing the much more rapid
sampling of the LE-MD algorithm. Upon revisiting a conformation the
LE potential energy is raised by 2.0 kJmol�1.

Figure 15. Experimental versus calculated relative Gibbs free energies
of binding for 16 hydroxylated polychlorinated biphenyls to the estro-
gen receptor binding domain in solution.[149] The horizontal lines
connect different experimental values for one compound. The calcu-
lated values were obtained from only two simulations and the one-step
perturbation method. The GROMOS 43 A1 force field was used.
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Figure 16. A surprising result after the simulation of many polypep-
tides: The number of unfolded conformations visited in MD simula-
tions of (un)folding equilibria of a host of polypeptides and peptoids
is much smaller than theoretically possible.[144–146]
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The observation that the unfolded state of poly-
peptides contains much fewer relevant conformations
than possible conformations opens up the possibility to
simulate the reversible (un)folding of small proteins
within not too many years (Figure 16).

4. The Ensemble Problem

Biomolecular modeling is hindered by the fact that
the behavior of biomolecular systems is governed by
statistical mechanics. If mechanics were applicable
only, one could characterize such systems in terms of
(global) minimum-energy structures. Statistical
mechanics leads to the concept of the entropy of a
system, that is, the negative derivative of the free
energy F with respect to temperature [Eq. (16)]:

SNVT ¼ �
�
@F
@T

�
NV

¼ ðU�FÞ=T ð16Þ

The entropy together with the energy of a system
[Eq. (17)], that is, the average of the Hamiltonian of
the system over the momenta and coordinates of all
degrees of freedom, determines the free energy
[Eq. (14)] of the system.

UNVT ¼
�
@ðF=TÞ
@ð1=TÞ

�
NV

¼ hHðp,rÞip,r ð17Þ

The Boltzmann average h···ip,r of a quantity Q(p,r), which
depends on the (atomic) coordinates and momenta, is defined
by Equation (18):

hQðp,rÞip,r ¼
R R

Qðp,rÞ exp½�Hðp,rÞ=kB T�dpdrR R
exp½�Hðp,rÞ=kB T�dp dr

ð18Þ

The state of a system is generally characterized not by one
configuration or structure, but by a Boltzmann ensemble of
configurations or structures. This complicates biomolecular
modeling, because it is easier to think of and handle single
structures than to consider configurational ensembles. How-
ever, a number of (experimental) observations can only be
understood by an analysis in terms of alternative structures
present in an ensemble and in terms of entropy.

4.1. Free Energy, Energy, and Entropy of Solvation

Since the free energy F can be written as F=U�TS,
different combinations of energy (U) and entropy (S) values
may result in the same free energy. This can be illustrated
through a calculation of the free energy of solvation DFS of a
solute in a binary solvent from MD simulations.[8] Figure 17
shows the Gibbs free energy DGS (the equivalent of the
quantity DFS under constant pressure) of solvating a methane
molecule in a mixture of water and a co-solvent (NaCl,
DMSO and acetone) as a function of the co-solvent concen-
tration or mole fraction. In NaCl, the value of DGS increases

as the co-solvent concentration increases, whereas in DMSO
and acetone the value of DGS decreases as the mole fraction
of the co-solvent increases. The Gibbs free energy DGS can be
broken down into an energetic contribution, the change in the
solute–solvent energy upon solvation (DUuv), and an entropic
contribution—the solute–solvent entropy change upon sol-
vation (�TDSuv) [Eq. (19)]:[8, 157–159]

DGS ¼ DUuv�TDSuv ð19Þ

The lower panels in Figure 17 show these energetic and
entropic contributions relative to neat water (indicated by
DD) also as a function of the co-solvent concentration or mole
fraction. The solvation of methane in aqueous solution is
disfavored with increasing NaCl concentration as a result of
an increasingly unfavorable solute–solvent entropy of solva-
tion. On the other hand, solvation of methane in aqueous
solution is favored both with increasing DMSO or acetone
mole fraction, but the relative roles of solute–solvent energy
and entropy are quite different, even though DMSO and
acetone are structurally rather similar molecules. Solvation in
DMSO is dominated by a favorable energy with increasing
DMSO concentration, whereas solvation in acetone is domi-
nated by a favorable entropy with increasing acetone
concentration. Thus, comparable curves for DGS are due to
quite different solvation mechanisms. This example illustrates
that entropy should be properly taken into account in
biomolecular modeling studies.

The varying roles of energy and entropy in hydrophobic
solvation is illustrated in Table 8 for a set of hydrophobic
molecules in different aqueous solutions. Increasing the size
of the hydrophobic solute in NaCl causes an increase in the
DDGS value as a consequence of an increase in �TDDSuv. In a

Figure 17. Gibbs free energy DGs for the solvation of methane (upper panels)
and solute–solvent energy DDUuv (triangles) and entropy TDDSuv (squares)
relative to neat water (lower panels) as a function of the salt concentration
NaCl (left panels), the mole fraction of DMSO (middle panels), and the mole
fraction of acetone (right panels).[8] The calculations were performed by using
the particle-insertion technique.
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urea/water mixture, DDGS is relatively independent of the
solute size, because of energy–entropy compensation. In
DMSO,DDGS becomes more favorable with increasing solute
size, because of a strongly favorable energetic contribution,
which is slightly counteracted by the entropy term �TDDSuv.
The picture again changes on changing from DMSO to
acetone in that the entropy term now coacts with the solvation
energy term, an effect that appears to increase with the
acetone concentration. These results show that similar free
energy changes, and thus the processes driven by them, can be
due to very different mechanisms. A proper modeling of
entropic effects is required to capture such molecular
processes.

4.2. Temperature Dependence of Folding Equilibria

The folding-unfolding equilibrium of a polypeptide is not
only determined by energy changes upon (un)folding, but also
by entropy changes. This will make the corresponding
conformational ensemble and folding pathways tempera-
ture-dependent. Figure 18 shows the most populated con-
formations of a b-heptapeptide in methanol at three different
temperatures as obtained from MD simulations.[138] The
quasivertical arrows between the rows indicate corresponding
conformations at the different temperatures, while the
horizontal arrows indicate the most dominant (un)folding
pathways (from and) to the most stable (helical) conforma-
tion C1. Both the conformational ensemble and the (un)fold-
ing pathways are temperature-dependent, as expected, and
this dependence can be investigated by MD simulation.

4.3. Different Conformations may Contribute to the Ensemble
Averages

If different conformations are present in the ensemble of
polypeptide conformations in solution, the measured average
value of an observable, such as an NOE intensity or a 3J-
coupling constant, may not correspond to any realistic (that is,
energetically accessible) conformation of the solute. This
problem may be aggravated by a nonlinear dependence of the

observable upon solute conformation. In such a case,
structure determination based on NMR data will only lead
to consistency with the experimentally measured observable
values if conformational ensembles instead of single struc-
tures are considered. An example of such a case is the b-
nonapeptide shown in Figure 19. Single-structure refinement
based on 65 NOE intensities and 4 3J-coupling constants
measured for the (unprotected) solute in methanol resulted in
a 12/10-helical model structure. The hydrogen bonds charac-

Table 8: Thermodynamic data [kJmol�1] for solute transfer from pure water to co-solvent/water mixtures at 298 K and 1 atm as calculated from MD simulations.[9] Mole fractions are
given in percent. Two different models (I and II) were used for acetone.

Solute NaCl (11%) Urea (15%) DMSO (10%)[a] Acetone(i) (10%) Acetone(i) (50%) Acetone(ii) (10%)
DDGS DDUuv TDDSuv DDGS DDUuv TDDSuv DDGS DDUuv TDDSuv DDGS DDUuv TDDSuv DDGS DDUuv TDDSuv DDGS DDUuv TDDSuv

helium 2.0 �0.4 �2.4 1.3 �0.1 �1.4 0.0 �0.2 �0.2 �0.4 �0.2 0.2 �1.7 �0.6 1.1 �0.1 �0.2 �0.1
neon 2.8 0.2 �2.6 1.1 �0.7 �1.8 �0.3 �0.7 �0.4 �0.7 �0.4 0.3 �2.4 �1.0 1.4 �0.4 �0.6 �0.2
argon 3.7 �0.1 �3.8 0.8 �2.3 �3.1 �0.9 �1.8 �0.9 �1.3 �1.0 0.3 �4.4 �2.1 2.3 �1.1 �1.7 �0.6
krypton 4.0 �0.2 �4.2 0.4 �3.2 �3.6 �1.2 �2.3 �1.1 �1.6 �1.2 0.4 �5.2 �2.6 2.6 �1.5 �2.3 �0.8
xenon 4.4 �1.2 �5.6 �0.5 �4.7 �4.2 �1.5 �2.7 �1.2 �2.2 �1.7 0.5 �6.8 �3.6 3.2 �2.1 �3.4 �1.3
methane 4.2 �0.2 �4.4 0.5 �3.1 �3.6 �1.1 �2.1 �1.0 �1.7 �1.2 0.5 �5.4 �2.6 2.8 �1.4 �2.2 �0.8
ethane 5.6 �0.8 �6.4 �0.9 �6.0 �5.1 �2.8 �4.4 �1.6 �2.9 �2.4 0.5 �8.4 �4.6 3.8 �2.6 �4.3 �1.7
propane 5.4 �0.3 �5.7 �2.2 �7.3 �5.1 �4.8 �5.8 �1.0 �5.8 �3.9 1.9 �13.0 �6.5 6.5 �4.8 �6.2 �1.4
n-butane 7.4 �1.2 �8.6 �2.7 �10.6 �7.9 �5.8 �7.9 �2.1 �6.4 �5.6 0.8 �15.7 �9.3 6.4 �4.3 �6.0 �1.7
iso-butane 5.7 �1.2 �6.9 �2.3 �10.2 �7.9 �6.5 �6.7 �0.2 �6.7 �4.9 1.8 �15.2 �7.7 7.5 �5.9 �7.7 �1.8
neo-pentane 8.2 �0.6 �8.8 �2.2 �10.9 �8.7 �6.0 �8.3 �2.3 �6.7 �4.3 2.4 �15.8 �7.1 8.7 �5.3 �9.7 �4.4

[a] To expedite statistical sampling, MD simulation runs were performed using an atomic mass of 15.9994 amu for the sulfur and water hydrogen atoms of DMSO. An MD time step of
4 fs was used.
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Figure 18. Most populated conformations of a b-heptapeptide in
methanol from MD simulations at three different temperatures.[138] The
quasi-vertical arrows indicate corresponding conformations at the
different temperatures, while the horizontal arrows represent the
dominant (un)folding pathways leading to the most stable (helical)
conformation C1.
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teristic for this type of helix are indicated in Figure 19 (dashed
and solid arrows). However, three weak NOE intensities
(2HN-5Hb, 6HN-3Hb, 7HN-4HbRe) were omitted in the
single-structure refinement, because of their incompatibility
with the 12/10 helix.[160] A 100-ns MD simulation of the b-
nonapeptide in methanol (without applying any NOE or 3J-
couping constant restraints) did essentially reproduce all
measured NOE intensities and 3J values.[161] Analysis of the
MD trajectory showed that the three mentioned NOE
intensities are due to a small percentage of an alternative
314-helical conformation (Figure 19, dotted arrows) in the
conformational ensemble. This example shows that unre-
strained MD simulation using a consistent, thermodynami-
cally calibrated force field for both solute and solvent and
including solvent degrees of freedom explicitly can contribute
significantly to a correct interpretation of experimental data
in terms of conformational distributions.

4.4. Perspectives in Calculating Entropies

While the determination of free-energy differences by
MD simulation has become a standard procedure, for which a
variety of techniques have been developed, total entropies
and entropy differences are still seldom computed. However,
entropy is the key property for understanding phenomena
such as hydrophobic interactions, solvation, ligand binding,
etc. Unfortunately, determining absolute entropies and
entropy differences from MD simulation is not an easy task:
it requires in principle the complete sampling of phase space.
Generally, one can distinguish two types of methods to obtain
reasonable estimates for entropies from MD simulations.

One type of methods focuses on conformational entro-
pies, which consider not all, but only internal (conforma-

tional) nondiffusive degrees of freedom,[162–165] for example, in
a protein.[166]

The other type of methods extends techniques that are
successfully used to estimate free-energy differences from the
calculation of entropy differences. To obtain free-energy
differences between two states of a system or between two
systems, the evaluation of the complete partition functions is
not really needed. It is sufficient to extensively sample the
relevant parts of phase or configuration space where the two
states or systems differ. In contrast, the corresponding
techniques to obtain entropy differences suffer from the fact
that they require an accurate estimate of an ensemble average
that includes the complete Hamiltonian operator H of the
system in the two states, not only the part of the Hamiltonian
operator that differs between the two states or systems (@H/
@l ; see Figure 20).[142] The complete Hamiltonian operator is
a sum over very many terms, of which only a few differ
between the two states of the system. It therefore takes a very
long time to obtain a precise ensemble. The most accurate
methods are methods 3 and 4 of Figure 20. Method 4 yields
only accurate solute–solvent entropies, not solvation entro-
pies, which involve all solvent terms. This methodology was
used to obtain the data shown in Table 8 and Figure 17.

The first type of methods is only suitable for estimating
solute conformational entropies; it is of little help for
diffusive systems such as solutions. The approaches used in
the second type of methods (Figure 20) have recently been
reviewed and evaluated.[142] Despite the progress made in
developing methods, the possibility to accurately compute
entropies is not good. None of the techniques considered
seems suitable for the calculation of the entropy of ligand–
protein binding or the entropy of polypeptide folding.
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Figure 19. Structural formula of a b-nonapeptide with arrows indicating the hydrogen-bonding patterns characteristic of 12/10- and 314-helices.
The 12/10-helix (top) is characterized by 10- (solid arrows) and 12-membered (dashed arrows) hydrogen-bonded rings, whereas the 314-helix
(bottom) is characterized by 14-membered hydrogen-bonded rings (dotted arrows).
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5. The Experimental Problem

Experimental data play an essential role in biomolecular
modeling. First, they form the basis on which classical force
fields are built (see Table 4). Without the experimental data
mentioned there, classical force-field development would be
virtually impossible. Quantum-chemical theoretical data
alone do not suffice to build a force field. Second, the
simulation methodology and the force field used can be
validated and tested by comparison of simulated or calculated
values for various molecular or system properties with
experimentally measured ones.

Three problems arise with respect to roles of experimental
data in biomolecular modeling: 1) Almost every experiment
involves an averaging over time and the space or molecules,

and, therefore, does not yield direct information on all
configurations constituting a simulation trajectory. 2) Exper-
imental data for biomolecular systems are scarce relative to
the number of degrees of freedom involved. This makes the
problem of deriving the conformational ensemble from
experimental data for a biomolecular system under-deter-
mined. Many different ensembles may reproduce the same set
of experimental data. 3) The experimental data may be of
insufficient accuracy to be used to (in)validate simulation
predictions. These three types of experimental problems with
regard to biomolecular modeling will be illustrated in the
following sections with examples.

5.1. The Averaging Limitation

A measurement of a quantity Q(r) that can be expressed
as a function of a molecular or system configuration r does not
yield a value Qobs=Q(r) that depends on a single config-
uration r, but yields an average over many molecules in the
real (macroscopic) system and over the duration of the
measurement [Eq. (20); the symbol h···i denotes averaging].

Qobs ¼ hQðrÞimolecules,time ð20Þ

In other words, only an average over the distribution P(Q)
of the quantity Q is measured (see Figure 21). The distribu-

tion itself is not measured. The detailed information on the
distribution is lost by averaging, and very different distribu-
tions may yield the same average. The sensitivity of an
average hQi value of a particular quantity Q to the shape of
the distribution P(Q) or the shape of the conformational
distribution P(r) can be very different for different quantities
Q.

As an example, we consider the conformational distribu-
tions of an octapeptide (Aib)6-Leu-Aib in DMSO solution
and in the crystal (Figure 22). Since this peptide contains
mainly achiral helix promoting Aib residues, the molecule is
expected to be able to adopt both an R- and an L-helical
conformation in solution. Indeed NOE intensities and
3J values compatible with either R- or L-helices are observed
in NMR experiments in solution.[167] In the crystal only the R-
helical form is found.[168] However, the calculated 3J values for
the crystal structure are with 4.2 Hz significantly lower than
the values of 6.9 Hz measured in solution. This observation

quantity Q

probability
P(Q)

(linear) average
<Q>

Figure 21. The averaging problem: the conformational distribution
over which an average is measured cannot be derived from this
average.

Figure 20. Four ways to compute entropy differences by using the
coupling parameter technique and MD simulations.[142]
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hints at different conformational distributions in solution and
in the crystal. To investigate these, MD simulations of the
octapeptide in DMSO solution and in the crystalline form
were carried out.[169,170] These reproduced accurately the
measured NOE intensities, 3J values, and X-ray structure, and
showed the differences in the conformational ensembles
(Figure 23). In solution transient R- and L-helical fragments

are present which led to a broad conformational ensemble
with h3Ji= 6.8 Hz, which coincides with the experimental
value. In the crystal, a rather narrowR-helical conformational
ensemble is found with h3Ji= 4.0 Hz close to the 3J value
found from the X-ray structure. The simulations illustrate that
the NOE intensities are not very sensitive to the shape of the
conformational ensemble, as long as helical fragments are
present; however, they cannot distinguish between the
solution and crystal ensembles. In contrast, the 3J-coupling
constants reflect in this case the rather large differences
between the two conformational ensembles.

In other cases, 3J-coupling constants may be extremely
insensitive to the underlying conformational distribution.
This is illustrated in Figure 24, where simulated 3J values for a
b-heptapeptide in methanol are compared to experimental

values.[171] Four conformational distributions (generated at
298 K, 340 K, 350 K, and 360 K) that are rather different have
been used: they contain 97%, 50%, 39% and 25% 314-helical
structures, respectively.[171] However, the agreement with
experiment is of equal quality for each of the four different
distributions.

The loss of information through averaging in the mea-
surement is not restricted to NMR experiments. Similar
observations were made for circular dichroism (CD) spec-
tra.[172] Figure 25 shows the measured CD spectra for two b-
hexapeptides in methanol solution. The CD spectra are very
similar, although the conformational ensembles for the two
solutes were expected to be rather different since the double
methylation at the a-carbon atom of peptide A inhibits the
formation of a 314-helix, whereas peptide B, which only differs
from peptide A in this respect, can and does adopt such a
helix. This was confirmed by NOE intensities measured in
NMR experiments. To resolve this puzzle, 100-ns MD
simulations of each molecule were carried out and average
CD spectra were calculated from the MD trajectories.[172] The
spectra are of similar shape as the experimental ones, only the
amplitudes are smaller. The conformations dominating the
corresponding conformational ensembles are shown in
Figure 26 together with the corresponding CD spectra. For
peptide A, the CD spectrum is dominated by the second most
populated (13%) conformation, not by the most populated
one. The only helical conformation of peptide B (18%
population) exhibits a spectrum quite different from the
other conformations and from experiment.

This raises the question as to whether a particular
spectrum can be assigned to a particular structure. In

crystal solution
probability

P(x)

conformation x

Figure 23. The conformational distribution in solution and in the
crystal can be different. In the text, an example of an octapeptide is
discussed.[169,170]

Figure 24. Comparison of the 21 experimental average 3J-coupling
constants measured at 298 K with the corresponding averaged 3J-
coupling constants calculated for the trajectory structures of 50-ns MD
simulations of a b-heptapeptide in methanol at four different temper-
atures. The four conformational distributions are rather different: they
contain 97%, 50%, 39%, and 25% 314-helical structures, respec-
tively.[171]

Figure 22. 3J Coupling constants are dependent upon the conforma-
tional arrangement of an octapeptide, while in contrast NOE inten-
sities are not sensitive.[169,170]
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Figure 27 the six CD spectra with the largest amplitudes are
displayed for each peptide together with the six MD
trajectory structures that lead to these spectra. It is clear
that the same spectrum can be generated by very different
structures. Figure 28 shows a conformational clustering anal-
ysis of the combined MD trajectories of both peptides. It turns
out that there is virtually no overlap between the two
conformational ensembles of the peptides, although their
CD spectra are very similar both in experiment and in
simulation. This observation posts a cautionary note when
interpreting CD spectra in terms of molecular conformations.
The averaging problem means that no reliable conclusions
about conformational preferences can be drawn from the
measured CD spectra.

5.2. Insufficient Number of Experimental Data

If the number of experimental data on a biomolecular
system is lower than the number of degrees of freedom, or if
the different experimental data are correlated, they may not
uniquely determine the solute conformation that dominates
the conformational ensemble. An example of such a situation
is illustrated in Figure 29 where NOE distances and 3J-
coupling constant values obtained from MD simulations[173] as
well as from a set of 20 model structures derived during NMR
structure refinement[174] are compared to the measured values
for a b-hexapeptide in methanol. The NOE distances from the
100-ns MD simulations agree with the experimental values
(only two small violations) and so do the 3J values. The set of
20 NMR model structures also satisfies the experimental data,
which simply reflects the fact that they were derived using the
same data.[174] Figure 30 shows that there is relatively little
overlap between the simulated conformational ensembles
and the set of NMR model structures, yet the two sets of
structures reproduce the experimental data. These data
appear to be insufficient in number to uniquely determine
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Figure 25. Experimental CD spectra and CD spectra calculated from
100-ns MD simulations of two b-hexapeptides in methanol at 298 K.
Peptide B adopts a 314-helix, as confirmed by NMR experiments.
Peptide A is doubly methylated at the a position and does not form a
314-helix, although a CD spectrum “typical” for a 314-helix is
obtained.[172]

Figure 26. Dominant conformations in the MD trajectories of two b-hexapeptides A (methylated) and B (not methylated; see Figure 24) together
with the corresponding CD spectra.[172] (Similarity criterion: RMSD of backbone atoms 
0.09 nm; 10000 structures, 10 ps apart.)
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the dominant conformer: the MD trajectories
suggest a 2.512-P helix to be dominant, whereas
the set of NMR model structures suggest a 28-P-
helix.[173]

5.3. Accuracy of Experimental Data

The accuracy of experimental data is finite
and often insufficient to (in)validate simulation
results. An example of this situation is found in
Figure 15, where the disagreement between
computed and measured binding free energies
for a set of ligands to the estrogen receptor turns
out to be smaller than the variation between
different experimental values for the same
ligands.

It is not easy to determine the accuracy of
NOE distance bounds derived from NMR
experiments on proteins in aqueous solution.
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Figure 27. CD spectra for MD trajectory structures which show the largest CD signals, together with the corresponding structures of the two
b-hexapeptides A and B.[172]
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In other words, how large must a violation of such NOE
distance bounds be in an MD simulation to constitute a
significant disagreement between simulation and experi-
ment? Figure 31 shows the distribution of NOE distance
bounds violations for 3.5-ns MD trajectories of the protein

hen egg white lysozyme in aqueous solution.[175] Two MD
simulations based on different force-field parameter sets
(Panels A and C, versus B and D) are analyzed in terms of
two sets of experimentally determined NOE distance bounds
(Panels A and B versus C and D). The experiment in 1993
produced 1079 distance bounds[176] while the more recent
experiment in 2001 produced considerably more distance
bounds, namely 1630.[177] A comparison of both experimental
data sets with the single MD trajectories shows that the more
recent, more abundant experimental data agree slightly better
with the simulations (lower mean violation, fewer large
violations) than the older data set. This result shows that
experimental data may approach theoretical ones over time,
which may serve as a cautionary note when drawing
conclusions about (insufficient) quality of simulation results
from observed discrepancies between simulated and mea-
sured data.

5.4. Perspectives in Comparing Simulated and Measured Data

Simulation studies are normally verified by a comparison
of simulated and experimentally measured properties of the
system considered.[178] The results of such a comparison
between simulation and experiment can be classified as
follows.[137,179,180]

Case 1: Agreement between simulation and experiment.
This may arise from the following reasons:
a) The simulation adequately reflects the experimental

system.
b) The property examined is insensitive to the details of the

simulated trajectory. Variation of the simulation param-
eters would not change the agreement.

c) A compensation of errors has occurred. This situation can
easily emerge if only a few (global or system) properties
for a system with very many degrees of freedom are
calculated and compared.

Case 2: No agreement between simulation and experi-
ment is obtained as a consequence of one or both of the
following reasons:
a) The simulation does not reflect the experimental system.

The theory or model is incorrect, the simulated property is
not converged, the software is at fault, or the software is
incorrectly used.

b) The experimental data are incorrect or incorrectly inter-
preted, or both.

When comparing simulated with experimental results, the
same properties should be compared. This is not always
possible and sometimes only related properties are compared.
For example, atom-positional mean-square fluctuations and
crystallographic B factors both measure atomic mobility and
disorder but are differently defined: the former measures the
spatial distribution of a particular atom, whereas the latter
measures the extent of the occupation of a given position in
space by any atom that happens to be in that position.[181] As
another example, protein folding rates as measured from
simulated temperature renaturation may differ from those
measured in an (un)folding induced by a co-solvent admix-
ture.

With time, simulations will produce more accurate values
for the various molecular and system properties, because of
improved force fields and more extended equilibration and
sampling. It is hoped that the improvement in experimental
accuracy through improved measuring techniques may keep
up with the improvements in modeling.

With regard to experimental data to be used in the
development of a force field, a precise measurement of
thermodynamic data such as heat of vaporization, heat of
mixing, etc. for a wide variety of compounds at physiological
conditions would be most beneficial for the further develop-
ment of biomolecular modeling.

6. Perspectives in Biomolecular Modeling

The essential driving force behind the growth and devel-
opment of the field of biomolecular modeling was, is, and will
be the steady and rapid increase of computing power.
Figure 32 shows there has been an average increase in
computing power by a factor of 10 about every 5 years over
the past few decades. This trend will probably continue in the
near future, based on the on-going application of parallel
computing. The possibility of parallel computing can be
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3.5-ns MD simulations of hen egg white lysozyme in aqueous
solution[175] relative to two sets of NOE distance bounds derived from
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from the MD trajectories relative to the NOE distance bounds of
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exploited in biomolecular simulation, since the most time-
consuming part is the force or interaction calculation, which
can be carried out in parallel for all atoms in the system. In
particular, the advent of new hardware designed to solve the
protein-folding problem through classical dynamical simula-
tion opens up the possibility of more accurate simulations and
new applications.[182]

A second driving force behind biomolecular modeling is
the advancement of modeling techniques. For example,
efficient algorithms to compute long-range electrostatic
forces have become available.[13,21,27] Methods have been
developed to extend and enhance sampling,[61,63,85,155,183] and
biomolecular force fields have been refined.[7, 184]

These driving forces have led to simulations of ever larger
systems or over ever longer time periods (see Table 9).
Practical applications of simulation address a variety of

systems and processes: molecular complexation, ligand bind-
ing, polypeptide folding, transport across membranes, mem-
brane formation, crystallization. Extrapolation of the effi-
ciency increase in simulation by a factor 10 every 5 years leads
to the predictions listed in Table 9. However, these are rather
senseless predictions. First, computing power is unlikely to
continue to grow for ever at the rate observed up until now.
Second, when simulating ever-larger systems in atomic detail,
more and more pair interactions need to be added to obtain
the system energy. To obtain the same overall accuracy for a
large system as for a small one, the accuracy of the pair
interactions must be much higher for the large system.
However, this accuracy is limited by the approximations on
which a force-field description of the system rests. Third, one
may question the value of a detailed atomic description of a
macroscopic system. In other words, it still remains manda-
tory to formulate simple and approximate models (Figure 33)
that contain just the necessary degrees of freedom to
adequately represent the phenomenon of interest.

The question remains, along which lines should current
biomolecular models be extended, improved, or simplified?
First, an appropriate description of enzyme reactions requires
the inclusion of electronic degrees of freedom, one level up
from the theoretical level of classical MD methods in Table 1.
Hybrid quantum-classical (QM/MM) modeling will be further
developed to this end.[49,185–187] To simulate proton-transfer
reactions, it may be necessary to employ quantum-dynamical
methodology,[188–191] which requires even more computing
power than QM/MM calculations.[192] Second, at the classical
level of modeling, improvements will come from the intro-
duction of polarizability in biomolecular force fields,[44–48]

from the incorporation of co-solvent effects through explicit
simulation,[193] and from techniques to extend the sampling
power of simulations.[61–63] Third, simplification of models by
averaging over atomic degrees of freedom (coarse-grain-
ing)[54–59] will allow the simulation of slower processes, such as
membrane formation.[60, 194]

The reason for using simulation and modeling was
indicated in Table 3: to provide a microscopic picture of
unrivaled resolution in time, space, and energy that comple-

Table 9: History and extrapolated future of computer simulations of
molecular dynamics. The future is deduced from extrapolation based on
an observed increase of computing speed of a factor 10 every 5 years over
the past decades (see Figure 31).

Year Molecular system (type, size) Length of the simula-
tion [s]

1957 first molecular dynamics simulation
(hard discs)

1964 atomic liquid (argon) 10�11

1971 molecular liquid (water) 5O10�12

1977 protein in a vacuum 2O10�11

1983 protein in water 2O10�11

1989 protein–DNA complex in water 10�10

1997 polypeptide folding in solvent 10�7

2001 micelle formation 10�7

200x folding of a small protein 10�3

And the future …

2001 biomolecules in water (ca. 104 atoms) 10�8

2029 biomolecules in water (folding sooner?) 10�3

2034 E. coli bacteria (ca. 1011 atoms) 10�9

2056 mammalian cell (ca. 1015 atoms) 10�9

2080 biomolecules in water (as fast as nature) 106

2172 human body (ca. 1027 atoms) 1
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Figure 32. Development of computing power of the most powerful
computers.

Figure 33. Computational physics, chemistry, and biology involve the
formulation and testing of (mathematical) models of the real world.
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ments the limited set of properties obtainable from experi-
ment. Second, system parameters can be changed at will
during the modeling study to study particular cause–effect
relationships, thus leading to enhanced understanding of
biomolecular systems.

The challenge when modeling a biomolecular system lies
in a proper balance between the choices to be made regarding
degrees of freedom, force field, sampling, and boundary
conditions (see Figure 2). These choices will depend on three
factors (Figure 34).

1. The properties of the biomolecular system one is inter-
ested in should be listed and the size of the configuration
space (or time scale) to be searched and sampled should be
estimated.

2. The required accuracy of the properties should be
specified.

3. The available computing power should be estimated.

If the model selected is too simple, the phenomena of
interest may be lost or the accuracy may be insufficient. If the
model is too elaborate, sampling of the required extent of
configuration space may be impossible. It is the art of
biomolecular modeling to sail safely between these Scylla and
Charybdis.[195]
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